Multi-Source Uncertainty Mining for Deep Unsupervised Saliency Detection

Yifa Wang, Wenbo Zhang, Lijun Wang, Tinglong Liu, Huchuan Lu
{"title":"Multi-Source Uncertainty Mining for Deep Unsupervised Saliency Detection","authors":"Yifa Wang, Wenbo Zhang, Lijun Wang, Tinglong Liu, Huchuan Lu","doi":"10.1109/CVPR52688.2022.01143","DOIUrl":null,"url":null,"abstract":"Deep learning-based image salient object detection (SOD) heavily relies on large-scale training data with pixel-wise labeling. High-quality labels involve intensive labor and are expensive to acquire. In this paper, we propose a novel multi-source uncertainty mining method to facilitate unsupervised deep learning from multiple noisy labels generated by traditional handcrafted SOD methods. We design an Uncertainty Mining Network (UMNet) which consists of multiple Merge-and-Split (MS) modules to recursively analyze the commonality and difference among multiple noisy labels and infer pixel-wise uncertainty map for each label. Meanwhile, we model the noisy labels using Gibbs distribution and propose a weighted uncertainty loss to jointly train the UMNet with the SOD network. As a consequence, our UMNet can adaptively select reliable labels for SOD network learning. Extensive experiments on benchmark datasets demonstrate that our method not only outperforms existing unsupervised methods, but also is on par with fully-supervised state-of-the-art models.","PeriodicalId":355552,"journal":{"name":"2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR52688.2022.01143","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

Deep learning-based image salient object detection (SOD) heavily relies on large-scale training data with pixel-wise labeling. High-quality labels involve intensive labor and are expensive to acquire. In this paper, we propose a novel multi-source uncertainty mining method to facilitate unsupervised deep learning from multiple noisy labels generated by traditional handcrafted SOD methods. We design an Uncertainty Mining Network (UMNet) which consists of multiple Merge-and-Split (MS) modules to recursively analyze the commonality and difference among multiple noisy labels and infer pixel-wise uncertainty map for each label. Meanwhile, we model the noisy labels using Gibbs distribution and propose a weighted uncertainty loss to jointly train the UMNet with the SOD network. As a consequence, our UMNet can adaptively select reliable labels for SOD network learning. Extensive experiments on benchmark datasets demonstrate that our method not only outperforms existing unsupervised methods, but also is on par with fully-supervised state-of-the-art models.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
深度无监督显著性检测的多源不确定性挖掘
基于深度学习的图像显著目标检测(SOD)严重依赖于具有逐像素标记的大规模训练数据。高质量的标签需要密集的劳动,而且价格昂贵。在本文中,我们提出了一种新的多源不确定性挖掘方法,以促进传统手工SOD方法产生的多个噪声标签的无监督深度学习。设计了一个由多个合并与分裂(Merge-and-Split, MS)模块组成的不确定性挖掘网络(UMNet),递归分析多个噪声标签之间的共性和差异,并推断出每个标签逐像素的不确定性映射。同时,我们使用Gibbs分布对噪声标签进行建模,并提出加权不确定性损失来联合训练UMNet和SOD网络。因此,我们的UMNet可以自适应地选择可靠的标签进行SOD网络学习。在基准数据集上的大量实验表明,我们的方法不仅优于现有的无监督方法,而且与完全监督的最先进模型相当。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Synthetic Aperture Imaging with Events and Frames PhotoScene: Photorealistic Material and Lighting Transfer for Indoor Scenes A Unified Model for Line Projections in Catadioptric Cameras with Rotationally Symmetric Mirrors Distinguishing Unseen from Seen for Generalized Zero-shot Learning Virtual Correspondence: Humans as a Cue for Extreme-View Geometry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1