An efficient parameter selection criterion for image denoising

H. Pirsiavash, S. Kasaei, F. Marvasti
{"title":"An efficient parameter selection criterion for image denoising","authors":"H. Pirsiavash, S. Kasaei, F. Marvasti","doi":"10.1109/ISSPIT.2005.1577214","DOIUrl":null,"url":null,"abstract":"The performance of most image denoising systems depends on some parameters which should be set carefully based on noise distribution and its variance. As in some applications noise characteristics are unknown, in this research, a criterion which its minimization leads to the best parameter set up is introduced. The proposed criterion is evaluated for the wavelet shrinkage image denoising algorithm using the cross validation procedure. The criterion is tested for some different values of thresholds, and the output leading to the minimum criterion value is selected as the final denoised output. The resulting outputs of our method and the previous threshold selection scheme for the wavelet shrinkage, i.e. the median absolute difference (MAD), are compared. The objective and subjective test results show the improved efficiency of the proposed denoising algorithm","PeriodicalId":421826,"journal":{"name":"Proceedings of the Fifth IEEE International Symposium on Signal Processing and Information Technology, 2005.","volume":"98 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Fifth IEEE International Symposium on Signal Processing and Information Technology, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSPIT.2005.1577214","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

The performance of most image denoising systems depends on some parameters which should be set carefully based on noise distribution and its variance. As in some applications noise characteristics are unknown, in this research, a criterion which its minimization leads to the best parameter set up is introduced. The proposed criterion is evaluated for the wavelet shrinkage image denoising algorithm using the cross validation procedure. The criterion is tested for some different values of thresholds, and the output leading to the minimum criterion value is selected as the final denoised output. The resulting outputs of our method and the previous threshold selection scheme for the wavelet shrinkage, i.e. the median absolute difference (MAD), are compared. The objective and subjective test results show the improved efficiency of the proposed denoising algorithm
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种有效的图像去噪参数选择准则
大多数图像去噪系统的性能取决于一些参数,这些参数应根据噪声分布及其方差仔细设置。由于在某些应用中噪声特性是未知的,在本研究中,引入了一个使噪声最小的准则,从而得到最佳参数。采用交叉验证方法对小波收缩图像去噪算法进行了评价。对不同的阈值对准则进行测试,并选择导致准则值最小的输出作为最终去噪输出。我们的方法和之前的小波收缩阈值选择方案,即中位数绝对差(MAD)的输出结果进行了比较。客观和主观测试结果表明,该去噪算法提高了去噪效率
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A butterfly structure for rate k/n convolutional codes Mode decision optimization issues in H.264 video coding Implementation procedure of wireless signal map matching for location-based services Speech synthesis from surface electromyogram signal A text summarizer based on meta-search
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1