Parametric PDF for Goodness of Fit

N. Katz, Uri Itai
{"title":"Parametric PDF for Goodness of Fit","authors":"N. Katz, Uri Itai","doi":"10.48550/arXiv.2210.14005","DOIUrl":null,"url":null,"abstract":"The methods for the goodness of fit in classification problems require a prior threshold for determining the confusion matrix. Nonetheless, this fixed threshold removes information that the model’s curves present and may be beneficial for further studies such as risk evaluation and stability analysis. We present a different framework that allows us to perform this study using a parametric PDF.","PeriodicalId":373878,"journal":{"name":"Adv. Artif. Intell. Mach. Learn.","volume":"201 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Adv. Artif. Intell. Mach. Learn.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2210.14005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The methods for the goodness of fit in classification problems require a prior threshold for determining the confusion matrix. Nonetheless, this fixed threshold removes information that the model’s curves present and may be beneficial for further studies such as risk evaluation and stability analysis. We present a different framework that allows us to perform this study using a parametric PDF.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
参数PDF的拟合优度
分类问题的拟合优度方法需要一个先验阈值来确定混淆矩阵。尽管如此,这个固定的阈值消除了模型曲线所呈现的信息,可能有利于进一步的研究,如风险评估和稳定性分析。我们提出了一个不同的框架,允许我们使用参数PDF执行这项研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
FishRecGAN: An End to End GAN Based Network for Fisheye Rectification and Calibration Should ChatGPT and Bard Share Revenue with Their Data Providers? A New Business Model for the AI Era Structural Vibration Signal Denoising Using Stacking Ensemble of Hybrid CNN-RNN A Comparison of Methods for Neural Network Aggregation One-class Damage Detector Using Deeper Fully Convolutional Data Descriptions for Civil Application
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1