Amila Akagic, Senka Krivic, Harun Dizdar, J. Velagić
{"title":"Computer Vision with 3D Point Cloud Data: Methods, Datasets and Challenges","authors":"Amila Akagic, Senka Krivic, Harun Dizdar, J. Velagić","doi":"10.1109/ICAT54566.2022.9811120","DOIUrl":null,"url":null,"abstract":"The scientific discipline of Computer Vision (CV) is a fast developing branch of Machine Learning (ML). It addresses various tasks important for robotics, medicine, autonomous driving, surveillance, security or scene understanding. The development of sensor technologies enabled wide usage of 3D sensors, and therefore, it increased the interest of the CV research community in creating methods for 3D sensor data. This paper outlines seven CV tasks with 3D point cloud data, state-of-the-art techniques, and datasets. Additionally, we identify key challenges.","PeriodicalId":414786,"journal":{"name":"2022 XXVIII International Conference on Information, Communication and Automation Technologies (ICAT)","volume":"193 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 XXVIII International Conference on Information, Communication and Automation Technologies (ICAT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAT54566.2022.9811120","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
The scientific discipline of Computer Vision (CV) is a fast developing branch of Machine Learning (ML). It addresses various tasks important for robotics, medicine, autonomous driving, surveillance, security or scene understanding. The development of sensor technologies enabled wide usage of 3D sensors, and therefore, it increased the interest of the CV research community in creating methods for 3D sensor data. This paper outlines seven CV tasks with 3D point cloud data, state-of-the-art techniques, and datasets. Additionally, we identify key challenges.