Cross-Modal Deep Learning Based on Texts and ECG Images for Risk Prediction of Patients with Acute Chest Pain in the Emergency Department

Po Hsiang Lin, J. Hsieh, Chien-Hua Chen, J. Jeng
{"title":"Cross-Modal Deep Learning Based on Texts and ECG Images for Risk Prediction of Patients with Acute Chest Pain in the Emergency Department","authors":"Po Hsiang Lin, J. Hsieh, Chien-Hua Chen, J. Jeng","doi":"10.1109/ECICE52819.2021.9645629","DOIUrl":null,"url":null,"abstract":"Acute chest pain is one of the most common complaints and is frequently related to life-threatening diseases in the emergency department. We aimed to construct a cross-modal deep learning model for risk prediction of acute chest pain by the physicians' clinical texts and electrocardiogram (ECG). Two different modalities included the initial ECG image and the physicians' notes are used to predict the disposition.","PeriodicalId":176225,"journal":{"name":"2021 IEEE 3rd Eurasia Conference on IOT, Communication and Engineering (ECICE)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 3rd Eurasia Conference on IOT, Communication and Engineering (ECICE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECICE52819.2021.9645629","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Acute chest pain is one of the most common complaints and is frequently related to life-threatening diseases in the emergency department. We aimed to construct a cross-modal deep learning model for risk prediction of acute chest pain by the physicians' clinical texts and electrocardiogram (ECG). Two different modalities included the initial ECG image and the physicians' notes are used to predict the disposition.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于文本和心电图图像的跨模态深度学习在急诊科急性胸痛患者风险预测中的应用
急性胸痛是急诊科最常见的主诉之一,经常与危及生命的疾病有关。我们的目的是构建一个跨模态深度学习模型,通过医生的临床文献和心电图(ECG)来预测急性胸痛的风险。两种不同的模式包括最初的心电图图像和医生的笔记被用来预测处置。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Experimental Demonstration of 128QAM-OFDM Encoded Terahertz Signals over 20-km SMF Evaluation of Learning Effectiveness Using Mobile Communication and Reality Technology to Assist Teaching: A Case of Island Ecological Teaching [ECICE 2021 Front matter] Application of Time-series Smoothed Excitation CNN Model Study on Humidity Status Fuzzy Estimation of Low-power PEMFC Stack Based on the Softsensing Technology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1