EEG based Epileptic Seizures Detection using Intrinsic Time-Scale Decomposition

Murside Degirmenci, A. Akan
{"title":"EEG based Epileptic Seizures Detection using Intrinsic Time-Scale Decomposition","authors":"Murside Degirmenci, A. Akan","doi":"10.1109/TIPTEKNO50054.2020.9299262","DOIUrl":null,"url":null,"abstract":"Epilepsy is a type of neurological disorder that causes abnormal brain activities and creates epileptic seizures. Traditionally epileptic seizure prediction is realized with a visual examination of Electroencephalogram (EEG) signals. But this technique needs a long time EEG monitoring. So, the automatic epileptic seizures prediction schemes become a requirement at this point. This study proposes a method to classify epileptic seizures and normal EEG data by utilizing the Intrinsic Time-scale Decomposition (ITD)-based features. The dataset has been supplied from the database of the Epileptology Department of Bonn University. It contains 5 data groups A, B, C, D, E. The study aims to classify healthy and epileptic data, so data of groups A and E are used to perform evaluations of proposed methods. The EEG data are decomposed into Proper Rotation Components (PRCs) by ITD. The feature extraction methods are applied to the first five PRCs of each EEG data from healthy and epileptic individuals. These features are classified using K-Nearest Neighbors (KNN), Linear Discriminant Analysis (LDA), Naive Bayes, Support Vector Machine (SVM) and Logistic Regression classifiers. The results demonstrated that the epileptic data is differentiated from normal data by applying the nonlinear ITD with outstanding classification performance.","PeriodicalId":426945,"journal":{"name":"2020 Medical Technologies Congress (TIPTEKNO)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 Medical Technologies Congress (TIPTEKNO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TIPTEKNO50054.2020.9299262","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Epilepsy is a type of neurological disorder that causes abnormal brain activities and creates epileptic seizures. Traditionally epileptic seizure prediction is realized with a visual examination of Electroencephalogram (EEG) signals. But this technique needs a long time EEG monitoring. So, the automatic epileptic seizures prediction schemes become a requirement at this point. This study proposes a method to classify epileptic seizures and normal EEG data by utilizing the Intrinsic Time-scale Decomposition (ITD)-based features. The dataset has been supplied from the database of the Epileptology Department of Bonn University. It contains 5 data groups A, B, C, D, E. The study aims to classify healthy and epileptic data, so data of groups A and E are used to perform evaluations of proposed methods. The EEG data are decomposed into Proper Rotation Components (PRCs) by ITD. The feature extraction methods are applied to the first five PRCs of each EEG data from healthy and epileptic individuals. These features are classified using K-Nearest Neighbors (KNN), Linear Discriminant Analysis (LDA), Naive Bayes, Support Vector Machine (SVM) and Logistic Regression classifiers. The results demonstrated that the epileptic data is differentiated from normal data by applying the nonlinear ITD with outstanding classification performance.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于内禀时间尺度分解的脑电图癫痫发作检测
癫痫是一种神经系统疾病,会导致大脑活动异常,并导致癫痫发作。传统的癫痫发作预测是通过脑电图(EEG)信号的视觉检查来实现的。但该技术需要长时间的脑电图监测。因此,癫痫发作的自动预测方案在这一点上成为一种需求。本研究提出了一种利用固有时间尺度分解(ITD)特征对癫痫发作和正常脑电图数据进行分类的方法。数据集来自波恩大学癫痫学系的数据库。它包含A, B, C, D, E 5组数据。本研究的目的是对健康数据和癫痫数据进行分类,因此使用A组和E组的数据对所提出的方法进行评估。利用ITD将脑电数据分解为适当旋转分量(PRCs)。将特征提取方法应用于健康和癫痫个体的每个EEG数据的前五个prc。这些特征使用k近邻(KNN)、线性判别分析(LDA)、朴素贝叶斯、支持向量机(SVM)和逻辑回归分类器进行分类。结果表明,应用非线性过渡段可将癫痫数据与正常数据区分开来,分类效果较好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multiclass Classification of Brain Cancer with Machine Learning Algorithms Digital Filter Design Based on ARDUINO and Its Applications Use of Velocity Vectors for Cell Classification Under Acoustic Drifting Forces Development of a Full Face Mask during the COVID-19 Epidemic Spread Period TIPTEKNO 2020 Index
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1