KNN based fault diagnosis system for induction motor

S. Samanta, J. Bera, G. Sarkar
{"title":"KNN based fault diagnosis system for induction motor","authors":"S. Samanta, J. Bera, G. Sarkar","doi":"10.1109/CIEC.2016.7513791","DOIUrl":null,"url":null,"abstract":"The paper deals with an online fault diagnosis system of 3-Φ induction motor with sequence component analysis. The fault diagnosis system uses only time synchronized three phase stator voltage and current samples, from which the positive and negative sequence components have been calculated using Sample Shifting Technique (SST). With the objectives to detect the type of fault, fault severity and faulty phase using sequence components analysis. The computational technique like K-nearest neighbor algorithm has been utilized to enhance the accuracy in diagnosis of faulty phase and the severity of fault. The severity information will definitely help to make a machine maintenance schedule and accordingly plant shut down can be made minimum.","PeriodicalId":443343,"journal":{"name":"2016 2nd International Conference on Control, Instrumentation, Energy & Communication (CIEC)","volume":"78 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 2nd International Conference on Control, Instrumentation, Energy & Communication (CIEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIEC.2016.7513791","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

The paper deals with an online fault diagnosis system of 3-Φ induction motor with sequence component analysis. The fault diagnosis system uses only time synchronized three phase stator voltage and current samples, from which the positive and negative sequence components have been calculated using Sample Shifting Technique (SST). With the objectives to detect the type of fault, fault severity and faulty phase using sequence components analysis. The computational technique like K-nearest neighbor algorithm has been utilized to enhance the accuracy in diagnosis of faulty phase and the severity of fault. The severity information will definitely help to make a machine maintenance schedule and accordingly plant shut down can be made minimum.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于KNN的异步电动机故障诊断系统
本文用序列分量分析法研究了3-Φ异步电动机在线故障诊断系统。故障诊断系统仅使用时间同步的三相定子电压和电流样本,利用样本移位技术(SST)计算正负序分量。目的是利用序列分量分析法检测故障类型、故障严重程度和故障相位。利用k近邻算法等计算技术提高了故障相位诊断的准确性和故障的严重程度。严重程度信息肯定有助于制定机器维护计划,从而使工厂停机时间降至最低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Design methodology, control and performance of a three-phase grid-tie PV inverter under maximum power point tracking An improved performance of the soft switching buck converter Multi-objective function for system modeling and optimal management of Micro grid: A hybrid technique A single-phase isolated Z-source inverter Three phase three switch modular Vienna, Boost and SEPIC rectifiers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1