{"title":"Conceptual Neuroadaptive Brain Computer Interface for Autonomous Control of Automobile Brakes","authors":"Devaj Parikh, K. George","doi":"10.1109/UEMCON51285.2020.9298185","DOIUrl":null,"url":null,"abstract":"A link can be established between the human brain and an external device utilizing the Brain-Computer Interface technique which uses Electroencephalogram (EEG) signals. We can reduce car accidents occurring due to short-braking by applying this technique to the brakes for an automobile. This paper presents a system based on signals from the cerebellum part of the brain to control the brakes of an automobile. The system comprises of an ultra-cortex headset, personal computers with Processing IDE, and an Arduino board to control the braking mechanism. Three subjects tested the system where each subject performed four trials. Testing was performed to determine the time difference between the system to complete the action and the human to perform the same. The average time response measured was found to be 450ms for a human and 250ms for the system.","PeriodicalId":433609,"journal":{"name":"2020 11th IEEE Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON)","volume":"478 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 11th IEEE Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UEMCON51285.2020.9298185","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
A link can be established between the human brain and an external device utilizing the Brain-Computer Interface technique which uses Electroencephalogram (EEG) signals. We can reduce car accidents occurring due to short-braking by applying this technique to the brakes for an automobile. This paper presents a system based on signals from the cerebellum part of the brain to control the brakes of an automobile. The system comprises of an ultra-cortex headset, personal computers with Processing IDE, and an Arduino board to control the braking mechanism. Three subjects tested the system where each subject performed four trials. Testing was performed to determine the time difference between the system to complete the action and the human to perform the same. The average time response measured was found to be 450ms for a human and 250ms for the system.