System Condition Assessment Based on Mathematical Analysis

D. Valis, L. Zák, Z. Vintr
{"title":"System Condition Assessment Based on Mathematical Analysis","authors":"D. Valis, L. Zák, Z. Vintr","doi":"10.1109/IEEM.2018.8607623","DOIUrl":null,"url":null,"abstract":"When determining a system technical condition, it is possible to use multiple approaches. For practical reasons it is convenient to use an indirect diagnostic signal. In our article we focus on applying oil field data collected from a few tens of heavy vehicle engines. The aim is to get a picture of how quickly oil polluting particles are made and consequently how quickly the degradation progresses. This leads to system condition monitoring. When modelling the occurrence of the oil polluting particles, advanced linear regression methods are used. When analysing the diagnostic data, we use mainly a novel quantile regression approach. The aim is to estimate i) the course of trend in the development of polluting particles, ii) critical threshold time hitting iii) distribution of first hitting time of occurrence of soft failure.","PeriodicalId":119238,"journal":{"name":"2018 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM)","volume":"117 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEEM.2018.8607623","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

When determining a system technical condition, it is possible to use multiple approaches. For practical reasons it is convenient to use an indirect diagnostic signal. In our article we focus on applying oil field data collected from a few tens of heavy vehicle engines. The aim is to get a picture of how quickly oil polluting particles are made and consequently how quickly the degradation progresses. This leads to system condition monitoring. When modelling the occurrence of the oil polluting particles, advanced linear regression methods are used. When analysing the diagnostic data, we use mainly a novel quantile regression approach. The aim is to estimate i) the course of trend in the development of polluting particles, ii) critical threshold time hitting iii) distribution of first hitting time of occurrence of soft failure.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于数学分析的系统状态评估
在确定系统技术条件时,可以使用多种方法。由于实际原因,使用间接诊断信号是方便的。在我们的文章中,我们将重点应用从几十台重型汽车发动机收集的油田数据。目的是了解油污颗粒的形成速度,以及降解过程的速度。这将导致系统状态监控。在模拟石油污染颗粒的发生时,采用了先进的线性回归方法。在分析诊断数据时,我们主要使用一种新颖的分位数回归方法。目的是估计i)污染颗粒发展趋势的过程,ii)临界阈值到达时间,iii)软破坏发生的首次到达时间的分布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Conceptual Interaction Cycle Between Individual and Group Absorptive Capacity with Social Integration Mechanism and Cohesive Learning Group as Moderating Variables Data-driven Defense Strategies for an Infrastructure Network against Multiple Interdictions Supplier Selection Model Development for Modular Product with Substitutability and Controllable Lead Time On a Discrete-time Epidemic Model based on a Continuous-time SEIR Model Under Feedback Vaccination Controls Biomass Supply Chain Design, Planning and Management: A Review of Literature
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1