Context Dependent Trajectory Generation using Sequence-to-Sequence Models for Robotic Toilet Cleaning

Pin-Chu Yang, Nishanth Koganti, G. A. G. Ricardez, Masaki Yamamoto, J. Takamatsu, T. Ogasawara
{"title":"Context Dependent Trajectory Generation using Sequence-to-Sequence Models for Robotic Toilet Cleaning","authors":"Pin-Chu Yang, Nishanth Koganti, G. A. G. Ricardez, Masaki Yamamoto, J. Takamatsu, T. Ogasawara","doi":"10.1109/RO-MAN47096.2020.9223341","DOIUrl":null,"url":null,"abstract":"A robust, easy-to-deploy robot for service tasks in a real environment is difficult to construct. Record-and-playback (R&P) is a method used to teach motor-skills to robots for performing service tasks. However, R&P methods do not scale to challenging tasks where even slight changes in the environment, such as localization errors, would either require trajectory modification or a new demonstration. In this paper, we propose a Sequence-to-Sequence (Seq2Seq) based neural network model to generate robot trajectories in configuration space given a context variable based on real-world measurements in Cartesian space. We use the offset between a target pose and the actual pose after localization as the context variable. The model is trained using a few expert demonstrations collected using teleoperation. We apply our proposed method to the task of toilet cleaning where the robot has to clean the surface of a toilet bowl using a compliant end-effector in a constrained toilet setting. In the experiments, the model is given a novel offset context and it generates a modified robot trajectory for that context. We demonstrate that our proposed model is able to generate trajectories for unseen setups and the executed trajectory results in cleaning of the toilet bowl.","PeriodicalId":383722,"journal":{"name":"2020 29th IEEE International Conference on Robot and Human Interactive Communication (RO-MAN)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 29th IEEE International Conference on Robot and Human Interactive Communication (RO-MAN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RO-MAN47096.2020.9223341","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

A robust, easy-to-deploy robot for service tasks in a real environment is difficult to construct. Record-and-playback (R&P) is a method used to teach motor-skills to robots for performing service tasks. However, R&P methods do not scale to challenging tasks where even slight changes in the environment, such as localization errors, would either require trajectory modification or a new demonstration. In this paper, we propose a Sequence-to-Sequence (Seq2Seq) based neural network model to generate robot trajectories in configuration space given a context variable based on real-world measurements in Cartesian space. We use the offset between a target pose and the actual pose after localization as the context variable. The model is trained using a few expert demonstrations collected using teleoperation. We apply our proposed method to the task of toilet cleaning where the robot has to clean the surface of a toilet bowl using a compliant end-effector in a constrained toilet setting. In the experiments, the model is given a novel offset context and it generates a modified robot trajectory for that context. We demonstrate that our proposed model is able to generate trajectories for unseen setups and the executed trajectory results in cleaning of the toilet bowl.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用序列到序列模型的机器人厕所清洁的上下文相关轨迹生成
在真实环境中构建一个健壮的、易于部署的服务任务机器人是很困难的。录制和回放(R&P)是一种用于教授机器人执行服务任务的运动技能的方法。然而,R&P方法不能扩展到具有挑战性的任务中,即使是环境中的微小变化,比如定位错误,也需要修改轨迹或进行新的演示。在本文中,我们提出了一个基于序列到序列(Seq2Seq)的神经网络模型来生成机器人在构型空间中的轨迹,给出了一个基于笛卡尔空间中真实世界测量的上下文变量。我们使用目标姿态和定位后的实际姿态之间的偏移量作为上下文变量。利用远程操作收集的少量专家演示对模型进行训练。我们将提出的方法应用于厕所清洁任务,其中机器人必须在受限的厕所设置中使用柔性末端执行器清洁马桶表面。在实验中,该模型给出了一个新的偏移环境,并根据该环境生成了修改后的机器人轨迹。我们证明了我们提出的模型能够为未见的设置生成轨迹,并且执行的轨迹导致马桶的清洁。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Adaptive Control Approach to Robotic Assembly with Uncertainties in Vision and Dynamics Affective Touch Robots with Changing Textures and Movements Interactive Robotic Systems as Boundary-Crossing Robots – the User’s View* Development of a Learning-Based Intention Detection Framework for Power-Assisted Manual Wheelchair Users Multi-user Robot Impression with a Virtual Agent and Features Modification According to Real-time Emotion from Physiological Signals
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1