Team R00 at Mowjaz Multi-Topic Labelling Task for Arabic Articles

Ahmed Qarqaz, Malak Abdullah
{"title":"Team R00 at Mowjaz Multi-Topic Labelling Task for Arabic Articles","authors":"Ahmed Qarqaz, Malak Abdullah","doi":"10.1109/ICICS52457.2021.9464544","DOIUrl":null,"url":null,"abstract":"This paper describes the winning system for the Mowjaz Multi-Topic Labelling Task. The goal of the task is to classify articles based on their topics and predict multiple topics in one article. The proposed system is an ensemble model that consists of six BERT-Based models trained on different versions of the dataset. It achieved an F1-Micro score of 0.886 and an Accuracy score of 0.843 on the validation data. It also achieved an F1-Micro score of 0.8595 on the Test data, which led to ranking the model 1st in the Mowjaz Multi-Topic Labelling leaderboard. The current research work discusses the pre-trained language models used for the experimentation that led to the proposed system and shows the models’ performances on the Arabic Articles dataset.","PeriodicalId":421803,"journal":{"name":"2021 12th International Conference on Information and Communication Systems (ICICS)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 12th International Conference on Information and Communication Systems (ICICS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICS52457.2021.9464544","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper describes the winning system for the Mowjaz Multi-Topic Labelling Task. The goal of the task is to classify articles based on their topics and predict multiple topics in one article. The proposed system is an ensemble model that consists of six BERT-Based models trained on different versions of the dataset. It achieved an F1-Micro score of 0.886 and an Accuracy score of 0.843 on the validation data. It also achieved an F1-Micro score of 0.8595 on the Test data, which led to ranking the model 1st in the Mowjaz Multi-Topic Labelling leaderboard. The current research work discusses the pre-trained language models used for the experimentation that led to the proposed system and shows the models’ performances on the Arabic Articles dataset.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
小组R00在Mowjaz多主题标签任务阿拉伯语文章
本文描述了Mowjaz多主题标签任务的获胜系统。任务的目标是根据主题对文章进行分类,并预测一篇文章中的多个主题。提出的系统是一个集成模型,由六个基于bert的模型在不同版本的数据集上训练而成。验证数据的F1-Micro评分为0.886,准确率评分为0.843。在测试数据上,它也获得了0.8595的F1-Micro分数,这使得该模型在Mowjaz多主题标签排行榜上排名第一。目前的研究工作讨论了用于实验的预训练语言模型,这些模型导致了所提出的系统,并展示了模型在阿拉伯语文章数据集上的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The influence of operating laser wavelengths on Doppler effect in LEO Optical satellite constellation Team YahyaD11 at the Mowjaz Multi-Topic Labelling Task SecKG: Leveraging attack detection and prediction using knowledge graphs DeSAN: De-anonymization against Background Knowledge in Social Networks Arabic Multi-Topic Labelling using Bidirectional Long Short-Term Memory
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1