{"title":"Petro-Elastic Modeling Applied to Multi-Porosity/Multi-Permeability Cores through a Simulation to Seismic Method","authors":"T. Ramsay, Aravind Prabhakar","doi":"10.2118/196685-ms","DOIUrl":null,"url":null,"abstract":"\n Multi-rock type cores can be characterized by complex higher order connectivity relationships within an agglomerated petrophysical system. A solution that relates multiphase flow simulation in cores to time-lapse seismic properties in order to examine closed-loop 4D integration is performed at a high level on a plug. While a 4D workflow is not explicitly examined in this work, the requisite petro-elastic modeling (PEM) method based on a simulation-driven interpretation of the Gassmann equation is described and a comparison is made with its empirically derived counterpart. This work illustrates that a simulation-driven petro-elastic modeling approach can be used to generate time-dependent saturated rock properties consistent with seismic attribute description at the plug and core scales. The results demonstrate the simulation-driven approach, of a petro-elastic model embedded in a reservoir simulator, as an alternative to relating pressure and saturation from reservoir simulator-to-seismic-derived properties using a priori empirically based correlations. The method discussed in this paper maintains appreciable continuity with the results of empirically based petro-elastic methods but demonstrates differences commensurate with principal fluid differentiation capability inherent to reservoir simulator-derived data and observed time-lapse seismic response. The significance of applied multi-porosity relationships is further realized upon examination of the time-dependent petro-elastic model results.","PeriodicalId":354509,"journal":{"name":"Day 3 Thu, September 19, 2019","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 3 Thu, September 19, 2019","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/196685-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Multi-rock type cores can be characterized by complex higher order connectivity relationships within an agglomerated petrophysical system. A solution that relates multiphase flow simulation in cores to time-lapse seismic properties in order to examine closed-loop 4D integration is performed at a high level on a plug. While a 4D workflow is not explicitly examined in this work, the requisite petro-elastic modeling (PEM) method based on a simulation-driven interpretation of the Gassmann equation is described and a comparison is made with its empirically derived counterpart. This work illustrates that a simulation-driven petro-elastic modeling approach can be used to generate time-dependent saturated rock properties consistent with seismic attribute description at the plug and core scales. The results demonstrate the simulation-driven approach, of a petro-elastic model embedded in a reservoir simulator, as an alternative to relating pressure and saturation from reservoir simulator-to-seismic-derived properties using a priori empirically based correlations. The method discussed in this paper maintains appreciable continuity with the results of empirically based petro-elastic methods but demonstrates differences commensurate with principal fluid differentiation capability inherent to reservoir simulator-derived data and observed time-lapse seismic response. The significance of applied multi-porosity relationships is further realized upon examination of the time-dependent petro-elastic model results.