Continuous HMM with state memberships provided by Takagi-Sugeno fuzzy rule systems (TSFRS)

M. Popescu, P. Gader
{"title":"Continuous HMM with state memberships provided by Takagi-Sugeno fuzzy rule systems (TSFRS)","authors":"M. Popescu, P. Gader","doi":"10.1109/NAFIPS.2002.1018049","DOIUrl":null,"url":null,"abstract":"In this paper we develop an EM based training algorithm for a Takagi-Sugeno fuzzy rule system (TSFRS). Since the training is unsupervised, no target values are needed. The TSFRS models the degree of membership based on a given distribution that can be modified by changing the consequence of the rules or by rule pruning. We use this training algorithm to train a hidden Markov model (HMM) with state memberships provided by TSFRS using a modified Baum-Welch algorithm. This representation has the advantage of being transparent, since one can analyze and modify the rules that form the membership TSFRS.","PeriodicalId":348314,"journal":{"name":"2002 Annual Meeting of the North American Fuzzy Information Processing Society Proceedings. NAFIPS-FLINT 2002 (Cat. No. 02TH8622)","volume":"515 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2002 Annual Meeting of the North American Fuzzy Information Processing Society Proceedings. NAFIPS-FLINT 2002 (Cat. No. 02TH8622)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NAFIPS.2002.1018049","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we develop an EM based training algorithm for a Takagi-Sugeno fuzzy rule system (TSFRS). Since the training is unsupervised, no target values are needed. The TSFRS models the degree of membership based on a given distribution that can be modified by changing the consequence of the rules or by rule pruning. We use this training algorithm to train a hidden Markov model (HMM) with state memberships provided by TSFRS using a modified Baum-Welch algorithm. This representation has the advantage of being transparent, since one can analyze and modify the rules that form the membership TSFRS.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Takagi-Sugeno模糊规则系统(TSFRS)提供的具有状态隶属度的连续HMM
本文针对Takagi-Sugeno模糊规则系统(TSFRS)开发了一种基于EM的训练算法。由于训练是无监督的,所以不需要目标值。TSFRS基于给定的分布建立隶属度模型,该分布可以通过改变规则的结果或通过规则修剪来修改。利用该训练算法,利用改进的Baum-Welch算法,训练具有TSFRS提供的状态隶属度的隐马尔可夫模型(HMM)。这种表示具有透明的优点,因为可以分析和修改构成成员TSFRS的规则。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fuzzy linear clustering for fabric selection from online database Fuzzy clustering in vision recognition applied in NAVI Fuzzy functions to select an optimal action in decision theory Fuzzy systems and soft O.R Conceptual fuzzy sets-based navigation system for Yahoo!
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1