Study on Influencing Factors of Soil Sample Self-Absorption With Monte Carlo Method

Erlei Ye, Chunxia Shen, Hongjie Nan
{"title":"Study on Influencing Factors of Soil Sample Self-Absorption With Monte Carlo Method","authors":"Erlei Ye, Chunxia Shen, Hongjie Nan","doi":"10.1115/icone29-92792","DOIUrl":null,"url":null,"abstract":"\n The detection efficiency of soil samples in a cylindrical measuring geometry was calculated using the Monte Carlo method, evaluating the self-absorption corrections in the energy range of 46-2615 keV. By controlling variables, the effects of parameters such as sample density, height and humidity on the self-absorption factor have been studied, and the corresponding correction functions have been obtained. The research results show that: for γ photons of a specific energy, the change of sample density has the greatest impact on self-absorption. For samples whose density is not much different from that of the standard sample, the impact of changes in height and humidity on self-absorption should be considered. In the high-precision measurement of samples containing low-energy γ-photon radionuclides, the errors caused by density, altitude and humidity should be comprehensively considered.","PeriodicalId":365848,"journal":{"name":"Volume 5: Nuclear Safety, Security, and Cyber Security","volume":"137 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 5: Nuclear Safety, Security, and Cyber Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/icone29-92792","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The detection efficiency of soil samples in a cylindrical measuring geometry was calculated using the Monte Carlo method, evaluating the self-absorption corrections in the energy range of 46-2615 keV. By controlling variables, the effects of parameters such as sample density, height and humidity on the self-absorption factor have been studied, and the corresponding correction functions have been obtained. The research results show that: for γ photons of a specific energy, the change of sample density has the greatest impact on self-absorption. For samples whose density is not much different from that of the standard sample, the impact of changes in height and humidity on self-absorption should be considered. In the high-precision measurement of samples containing low-energy γ-photon radionuclides, the errors caused by density, altitude and humidity should be comprehensively considered.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用蒙特卡罗方法研究土样自吸的影响因素
利用蒙特卡罗方法计算了土壤样品在圆柱形测量几何形状下的检测效率,评估了46 ~ 2615 keV能量范围内的自吸收修正。通过控制变量,研究了样品密度、高度、湿度等参数对自吸收因子的影响,得到了相应的修正函数。研究结果表明:对于特定能量的γ光子,样品密度的变化对自吸收的影响最大。对于密度与标准样品相差不大的样品,应考虑高度和湿度变化对自吸的影响。在对含有低能γ-光子放射性核素的样品进行高精度测量时,应综合考虑密度、海拔和湿度等因素造成的误差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Margin Analysis of Conventional Island Under Beyond Design Basis External Flooding Scenario for NPP Multi-Units Nuclear Power Plant Site Initial Event Filtration Simulation Research on Safe Load-Reducing Operation Margin of Nuclear Power Unit With Clogging of the CFI Drum Net Research on Risk Characterization Method of Marine Biological Disaster Affecting Water Intake Safety of Nuclear Power Plant and Application of Design Protection A Drive-Through Passenger Vehicle Inspecting System Using X-Ray Digital Radiography
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1