Optimal Bounds for Approximate Counting

Jelani Nelson, Huacheng Yu
{"title":"Optimal Bounds for Approximate Counting","authors":"Jelani Nelson, Huacheng Yu","doi":"10.1145/3517804.3526225","DOIUrl":null,"url":null,"abstract":"Storing a counter incremented N times would naively consume O(log N) bits of memory. In 1978 Morris described the very first streaming algorithm: the \"Morris Counter\" [15]. His algorithm's space bound is a random variable, and it has been shown to be O(log log N + log(1/ε) + log(1/δ)) bits in expectation to provide a (1+ε)-approximation with probability $1-δ to the counter's value. We provide a new simple algorithm with a simple analysis showing that randomized space O(log log N + log(1/ε) + log log(1/δ)) bits suffice for the same task, i.e. an exponentially improved dependence on the inverse failure probability. We then provide a new analysis showing that the original Morris Counter itself, after a minor but necessary tweak, actually also enjoys this same improved upper bound. Lastly, we prove a new lower bound for this task showing optimality of our upper bound. We thus completely resolve the asymptotic space complexity of approximate counting. Furthermore all our constants are explicit, and our lower bound and tightest upper bound differ by a multiplicative factor of at most 3+o(1).","PeriodicalId":230606,"journal":{"name":"Proceedings of the 41st ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 41st ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3517804.3526225","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Storing a counter incremented N times would naively consume O(log N) bits of memory. In 1978 Morris described the very first streaming algorithm: the "Morris Counter" [15]. His algorithm's space bound is a random variable, and it has been shown to be O(log log N + log(1/ε) + log(1/δ)) bits in expectation to provide a (1+ε)-approximation with probability $1-δ to the counter's value. We provide a new simple algorithm with a simple analysis showing that randomized space O(log log N + log(1/ε) + log log(1/δ)) bits suffice for the same task, i.e. an exponentially improved dependence on the inverse failure probability. We then provide a new analysis showing that the original Morris Counter itself, after a minor but necessary tweak, actually also enjoys this same improved upper bound. Lastly, we prove a new lower bound for this task showing optimality of our upper bound. We thus completely resolve the asymptotic space complexity of approximate counting. Furthermore all our constants are explicit, and our lower bound and tightest upper bound differ by a multiplicative factor of at most 3+o(1).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
近似计数的最优界
存储递增N次的计数器将天真地消耗O(log N)位内存。1978年,莫里斯描述了第一个流媒体算法:“莫里斯计数器”[15]。他的算法的空间边界是一个随机变量,它已经被证明是O(log log N + log(1/ε) + log(1/δ))位,期望提供一个(1+ε)-近似,概率为$1-δ。我们提供了一种新的简单算法,通过简单的分析表明,随机化空间O(log log N + log(1/ε) + log log(1/δ))位足以满足相同的任务,即对逆失效概率的依赖性呈指数级提高。然后,我们提供了一个新的分析,表明原来的莫里斯计数器本身,经过一个小但必要的调整,实际上也享受相同的改进上界。最后,我们证明了这个任务的一个新的下界,显示了上界的最优性。从而完全解决了近似计数的渐近空间复杂度问题。此外,我们所有的常数都是显式的,我们的下界和最紧上界相差一个乘因子,最多为3+ 0(1)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Gibbs-Rand Model Optimal Algorithms for Multiway Search on Partial Orders Estimation of the Size of Union of Delphic Sets: Achieving Independence from Stream Size The Complexity of Regular Trail and Simple Path Queries on Undirected Graphs Data Path Queries over Embedded Graph Databases
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1