Heart Disease Detection using ML and ES (Smart Wearable Health Monitoring System)

Osama M. Abu Zaid, adham mohamed, Kamel El-Sehly, Mahmoud Ossman, Mostafa Kamal, M. Aly
{"title":"Heart Disease Detection using ML and ES (Smart Wearable Health Monitoring System)","authors":"Osama M. Abu Zaid, adham mohamed, Kamel El-Sehly, Mahmoud Ossman, Mostafa Kamal, M. Aly","doi":"10.21608/kjis.2021.42695.1009","DOIUrl":null,"url":null,"abstract":"This paper proposed a smart wearable system for heart disease detection using machine learning and embedded systems. A smart wearable system that able to monitor the heart beat rate condition of patient. The heart beat rate is detected using photoplethysmogram (PPG). The signal is processed using ATmega32 Microcontroller to determine heart beat rate per minute. Then, it sends the heart rate represented as BPM to Android App Via Bluetooth Communication, Android app sends SMS alert to the mobile phone of medical experts or patient's family member, or their relatives via SMS contains user's current location, Android app calculates daily steps count. Android/Desktop app allow user to check nearest hospitals, cardiac centers, nearest Health centers (GYM) and also user's current location. Android/Desktop app allow user to know if he suffers from heart disease or not by one click which run a machine/Deep learning module that analyze user ‘s data to detect heart disease.","PeriodicalId":115907,"journal":{"name":"Kafrelsheikh Journal of Information Sciences","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kafrelsheikh Journal of Information Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21608/kjis.2021.42695.1009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper proposed a smart wearable system for heart disease detection using machine learning and embedded systems. A smart wearable system that able to monitor the heart beat rate condition of patient. The heart beat rate is detected using photoplethysmogram (PPG). The signal is processed using ATmega32 Microcontroller to determine heart beat rate per minute. Then, it sends the heart rate represented as BPM to Android App Via Bluetooth Communication, Android app sends SMS alert to the mobile phone of medical experts or patient's family member, or their relatives via SMS contains user's current location, Android app calculates daily steps count. Android/Desktop app allow user to check nearest hospitals, cardiac centers, nearest Health centers (GYM) and also user's current location. Android/Desktop app allow user to know if he suffers from heart disease or not by one click which run a machine/Deep learning module that analyze user ‘s data to detect heart disease.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于ML和ES(智能穿戴式健康监测系统)的心脏病检测
本文提出了一种基于机器学习和嵌入式系统的智能可穿戴心脏病检测系统。一种能够监测患者心率状况的智能可穿戴系统。采用光电容积描记图(PPG)检测心率。信号使用ATmega32微控制器进行处理,以确定每分钟的心率。然后,通过蓝牙通信将心率以BPM表示发送到安卓应用程序,安卓应用程序向医疗专家或患者家属或其亲属的手机发送短信提醒,通过短信包含用户当前的位置,安卓应用程序计算每天的步数。Android/桌面应用程序允许用户检查最近的医院,心脏中心,最近的健康中心(健身房)和用户当前的位置。Android/桌面应用程序允许用户知道他是否患有心脏病,通过一键运行机器/深度学习模块,分析用户的数据,以检测心脏病。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Anemia Diagnosis And Prediction Based On Machine Learning Chronic Kidney Disease Classification Using ML Algorithms Cost-Efficient Method for Detecting and Mitigating DDOS Attacks in SDN Based Networks Decision Making in an Information System Via Pawlak’s Rough Approximation The classification of mushroom using ML
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1