IOT based Novel speedy Detection of Forest fire using Sensors with improved accuracy by sensing Temperature and Atmospheric Carbon Dioxide Level using Node Microcontroller Unit in comparison with Arduino Microcontroller

P. R. Reddy, P. Kalyanasundaram, V. Suresh
{"title":"IOT based Novel speedy Detection of Forest fire using Sensors with improved accuracy by sensing Temperature and Atmospheric Carbon Dioxide Level using Node Microcontroller Unit in comparison with Arduino Microcontroller","authors":"P. R. Reddy, P. Kalyanasundaram, V. Suresh","doi":"10.1109/MACS56771.2022.10022408","DOIUrl":null,"url":null,"abstract":"The main objective of this research is to detect the forest fire by sensing temperature and atmospheric carbon dioxide (CO2) levels to prevent the forest fire and to provide exact information using IOT at faster speed. The efficiency of detection using Node Microcontroller Unit (NodeMCU) is compared with Arduino microcontroller. A total of 40 samples are taken from the Serial monitor of the Arduino IDE. Group 1 has temperature values (n = 10) and atmospheric carbon dioxide (CO2) levels (n = 10) with the Node Microcontroller Unit (Node MCU). Group 2 has temperature values (n = 10) and atmospheric carbon dioxide (CO2) levels (n = 10) using Arduino Microcontroller. In this novel forest fire detection, the G-power analysis was done to the samples and the minimum power is acquired to be 0.8 for the system with an error correction of 0.5. The significance values for the temperature sensor are 0.129 and 0.132 for NodeMCU and Arduino Microcontroller respectively. The significance values for atmospheric carbon dioxide (CO2) levels are 0.212 and 0.224 for NodeMCU and Arduino Microcontroller respectively. Results: Through the implementation of this novel forest fire detection, it is observed that the efficiency of NodeMCU is 92.9 % and efficiency of Arduino microcontroller is 89.95 %. This innovative approach with NodeMCU appears to be more efficient (92.9 %) in detecting the occurrence of forest fire using Arduino Microcontroller with the significance value of temperature and atmospheric carbon dioxide level of 0.129 and 0.212 respectively.","PeriodicalId":177110,"journal":{"name":"2022 14th International Conference on Mathematics, Actuarial Science, Computer Science and Statistics (MACS)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 14th International Conference on Mathematics, Actuarial Science, Computer Science and Statistics (MACS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MACS56771.2022.10022408","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

The main objective of this research is to detect the forest fire by sensing temperature and atmospheric carbon dioxide (CO2) levels to prevent the forest fire and to provide exact information using IOT at faster speed. The efficiency of detection using Node Microcontroller Unit (NodeMCU) is compared with Arduino microcontroller. A total of 40 samples are taken from the Serial monitor of the Arduino IDE. Group 1 has temperature values (n = 10) and atmospheric carbon dioxide (CO2) levels (n = 10) with the Node Microcontroller Unit (Node MCU). Group 2 has temperature values (n = 10) and atmospheric carbon dioxide (CO2) levels (n = 10) using Arduino Microcontroller. In this novel forest fire detection, the G-power analysis was done to the samples and the minimum power is acquired to be 0.8 for the system with an error correction of 0.5. The significance values for the temperature sensor are 0.129 and 0.132 for NodeMCU and Arduino Microcontroller respectively. The significance values for atmospheric carbon dioxide (CO2) levels are 0.212 and 0.224 for NodeMCU and Arduino Microcontroller respectively. Results: Through the implementation of this novel forest fire detection, it is observed that the efficiency of NodeMCU is 92.9 % and efficiency of Arduino microcontroller is 89.95 %. This innovative approach with NodeMCU appears to be more efficient (92.9 %) in detecting the occurrence of forest fire using Arduino Microcontroller with the significance value of temperature and atmospheric carbon dioxide level of 0.129 and 0.212 respectively.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
与Arduino微控制器相比,使用节点微控制器单元通过感知温度和大气二氧化碳水平,使用传感器提高精度的新型快速森林火灾检测
本研究的主要目的是通过感知温度和大气二氧化碳(CO2)水平来检测森林火灾,以防止森林火灾,并使用物联网以更快的速度提供准确的信息。比较了节点微控制器单元(Node Microcontroller Unit, NodeMCU)与Arduino微控制器的检测效率。从Arduino IDE的串行监视器中总共采集了40个样本。组1具有具有节点微控制器单元(Node MCU)的温度值(n = 10)和大气二氧化碳(CO2)水平(n = 10)。组2使用Arduino微控制器具有温度值(n = 10)和大气二氧化碳(CO2)水平(n = 10)。在这种新型的森林火灾探测中,对样本进行了g功率分析,系统的最小功率为0.8,误差校正为0.5。温度传感器的显著性值对于NodeMCU和Arduino微控制器分别为0.129和0.132。NodeMCU和Arduino微控制器的大气二氧化碳(CO2)水平显著值分别为0.212和0.224。结果:通过这种新型森林火灾探测的实现,NodeMCU的效率为92.9%,Arduino微控制器的效率为89.95%。这种采用NodeMCU的创新方法在利用Arduino微控制器检测森林火灾发生方面的效率更高(92.9%),温度和大气二氧化碳水平的显著性值分别为0.129和0.212。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
MRI image categorization and identification of brain tumours based on bandlet transforms utilising neural networks as opposed to support vector machine classifier * Simulation and Comparison of Current-Voltage characteristics of MESFET by Varying Channel Length and Comparing it with Single Gate MOSFET to Optimize Conductivity Vehicular Grounding Situation for Intelligent Transport Administration Using AODV to Decrease the Round Trip in Urban and Semi Urban using Smart Transport Techniques Comparing with PSN A Conceptual Predictive Analytics Model for the Identification of at-risk students in VLE using Machine Learning Techniques Identification of Diseased Apple Fruit using 3D and 2D Convolutional Neural Network for Improving Accuracy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1