A novel branch-and-bound based maximum-likelihood MIMO detection algorithm

M. Chang
{"title":"A novel branch-and-bound based maximum-likelihood MIMO detection algorithm","authors":"M. Chang","doi":"10.1109/RWS.2008.4463570","DOIUrl":null,"url":null,"abstract":"For a multiple-input multiple output (MIMO) communication system, the optimal detection is by the maximum-likelihood (ML) approach, which, however, has complexity that increases exponentially with the number of transmit antennas. In this paper, we propose a novel algorithm that implements the MIMO ML detection with reduced complexity. Our algorithm is developed based on a branch-and-bound (BB) principle. We apply a new type of cost function and give an efficient calculation algorithm. The initial reference data vector could be obtained by efficient MMSE-based algorithms. We also observe the impacts of initial reference data vectors.","PeriodicalId":431471,"journal":{"name":"2008 IEEE Radio and Wireless Symposium","volume":"75 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE Radio and Wireless Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RWS.2008.4463570","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

For a multiple-input multiple output (MIMO) communication system, the optimal detection is by the maximum-likelihood (ML) approach, which, however, has complexity that increases exponentially with the number of transmit antennas. In this paper, we propose a novel algorithm that implements the MIMO ML detection with reduced complexity. Our algorithm is developed based on a branch-and-bound (BB) principle. We apply a new type of cost function and give an efficient calculation algorithm. The initial reference data vector could be obtained by efficient MMSE-based algorithms. We also observe the impacts of initial reference data vectors.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种新的基于分支定界的最大似然MIMO检测算法
对于多输入多输出(MIMO)通信系统,最佳检测方法是最大似然(ML)方法,然而,该方法的复杂性随着发射天线的数量呈指数增长。在本文中,我们提出了一种新的算法,以降低复杂度来实现MIMO机器学习检测。我们的算法是基于分支定界(BB)原理开发的。提出了一种新型的成本函数,并给出了一种高效的计算算法。初始参考数据向量可以通过高效的mmse算法得到。我们还观察了初始参考数据向量的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Impact of RF circuit imperfections on multi-carrier and single-carrier based transmissions at 60 GHz A low phase noise and low power series coupled quadrature VCO using reconfigurable LC tank Emerging technologies in software defined receivers Simple accurate closed-form approximations for the crossing rates of Weibull fading channels in multibranch diversity systems Electromagnetic field strength assessment errors in flat roof vicinities
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1