Fast car Crash Detection in Video

Vicente Enrique Machaca Arceda, Elian Laura Riveros
{"title":"Fast car Crash Detection in Video","authors":"Vicente Enrique Machaca Arceda, Elian Laura Riveros","doi":"10.1109/CLEI.2018.00081","DOIUrl":null,"url":null,"abstract":"In this work, we aim to detect car crash accidents in video. We propose a three-stage framework: The first one is a car detection method using convolutional neural networks, in this case, we used the net You Only Look Once (YOLO); the second stage is a tracker in order to focus each car; then the final stage for each car we use the Violent Flow (ViF) descriptor with a Support Vector Machine (SVM) in order to detect the car crashes. Our proposal is almost in real time with just 0.5 seconds of delay and also we got a 89% accuracy detecting car crashes.","PeriodicalId":379986,"journal":{"name":"2018 XLIV Latin American Computer Conference (CLEI)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 XLIV Latin American Computer Conference (CLEI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CLEI.2018.00081","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

Abstract

In this work, we aim to detect car crash accidents in video. We propose a three-stage framework: The first one is a car detection method using convolutional neural networks, in this case, we used the net You Only Look Once (YOLO); the second stage is a tracker in order to focus each car; then the final stage for each car we use the Violent Flow (ViF) descriptor with a Support Vector Machine (SVM) in order to detect the car crashes. Our proposal is almost in real time with just 0.5 seconds of delay and also we got a 89% accuracy detecting car crashes.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
快速汽车碰撞检测视频
在这项工作中,我们的目标是在视频中检测车祸。我们提出了一个三阶段框架:第一个是使用卷积神经网络的汽车检测方法,在这种情况下,我们使用了网络You Only Look Once (YOLO);第二阶段是跟踪器,以聚焦每辆车;然后在最后阶段,我们使用暴力流(ViF)描述符和支持向量机(SVM)来检测每辆车的碰撞。我们的提议几乎是实时的,只有0.5秒的延迟,而且我们检测车祸的准确率达到了89%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Data Quality Measurement Framework A Chatterbot Sensitive to Student's Context to Help on Software Engineering Education Quality Assessment of Awareness Support in Agile Collaborative Tools Digital Recording of Temporal Sequences of Images Applied to the Analysis of the Phenological Evolution of Maize Crops Ludic Practices to Support the Development of Software Engineering Educational Games: A Systematic Review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1