{"title":"POSTER: DataLair: A Storage Block Device with Plausible Deniability","authors":"Anrin Chakraborti, Cheng Chen, R. Sion","doi":"10.1145/2976749.2989061","DOIUrl":null,"url":null,"abstract":"Sensitive information is present on our phones, disks, watches and computers. Its protection is essential. Plausible deniability of stored data allows individuals to deny that their device contains a piece of sensitive information. This constitutes a key tool in the fight against oppressive governments and censorship. Unfortunately, existing solutions, such as the now defunct TrueCrypt [2], can defend only against an adversary that can access a user's device at most once (\"single-snapshot adversary\"). Recent solutions have traded significant performance overheads for the ability to handle more powerful adversaries able to access the device at multiple points in time (\"multi-snapshot adversary\"). In this paper we show that this sacrifice is not necessary. We introduce and build DataLair, a practical plausible deniability mechanism. When compared with existing approaches, DataLair is two orders of magnitude faster (and as efficient as the underlying raw storage) for public data accesses, and 3-5 times faster for hidden data accesses. An important component in DataLair is a new, efficient write-only ORAM construction, which provides an improved access complexity when compared to the state-of-the-art.","PeriodicalId":432261,"journal":{"name":"Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2976749.2989061","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
Sensitive information is present on our phones, disks, watches and computers. Its protection is essential. Plausible deniability of stored data allows individuals to deny that their device contains a piece of sensitive information. This constitutes a key tool in the fight against oppressive governments and censorship. Unfortunately, existing solutions, such as the now defunct TrueCrypt [2], can defend only against an adversary that can access a user's device at most once ("single-snapshot adversary"). Recent solutions have traded significant performance overheads for the ability to handle more powerful adversaries able to access the device at multiple points in time ("multi-snapshot adversary"). In this paper we show that this sacrifice is not necessary. We introduce and build DataLair, a practical plausible deniability mechanism. When compared with existing approaches, DataLair is two orders of magnitude faster (and as efficient as the underlying raw storage) for public data accesses, and 3-5 times faster for hidden data accesses. An important component in DataLair is a new, efficient write-only ORAM construction, which provides an improved access complexity when compared to the state-of-the-art.