Sequential Classification with Empirically Observed Statistics

Mahdi Haghifam, V. Tan, A. Khisti
{"title":"Sequential Classification with Empirically Observed Statistics","authors":"Mahdi Haghifam, V. Tan, A. Khisti","doi":"10.1109/ITW44776.2019.8988993","DOIUrl":null,"url":null,"abstract":"Motivated by real-world machine learning applications, we consider the binary statistical classification task in the sequential setting where the generating distributions are unknown and only empirically sampled sequences are available to the decision maker. Then, the decision maker is tasked to classify a test sequence which is known to be generated according to either one of two distributions. The decision maker wishes to perform the classification task with minimum number of the test samples, so, at each step, it declares either “1”, “2” or “give me one more test sample”. We propose a classifier and analyze the type-I and type-II error probabilities. Also, we show the advantage of our sequential scheme compared to the existing non-sequential classifiers.","PeriodicalId":214379,"journal":{"name":"2019 IEEE Information Theory Workshop (ITW)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Information Theory Workshop (ITW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITW44776.2019.8988993","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

Motivated by real-world machine learning applications, we consider the binary statistical classification task in the sequential setting where the generating distributions are unknown and only empirically sampled sequences are available to the decision maker. Then, the decision maker is tasked to classify a test sequence which is known to be generated according to either one of two distributions. The decision maker wishes to perform the classification task with minimum number of the test samples, so, at each step, it declares either “1”, “2” or “give me one more test sample”. We propose a classifier and analyze the type-I and type-II error probabilities. Also, we show the advantage of our sequential scheme compared to the existing non-sequential classifiers.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
顺序分类与经验观察统计
受现实世界机器学习应用的启发,我们考虑了序列设置中的二进制统计分类任务,其中生成分布是未知的,并且只有经验采样序列可供决策者使用。然后,决策者的任务是对已知根据两种分布之一生成的测试序列进行分类。决策者希望以最少的测试样本数量执行分类任务,因此,在每一步,它声明“1”、“2”或“再给我一个测试样本”。我们提出了一个分类器,并分析了i型和ii型错误概率。此外,我们还展示了与现有的非顺序分类器相比,我们的顺序分类器的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Increasing the Lifetime of Flash Memories Using Multi-Dimensional Graph-Based Codes Channel Coding at Low Capacity LDPC Code Design for Delayed Bit-Interleaved Coded Modulation Multi-library Coded Caching with Partial Secrecy Optimal Broadcast Rate of a Class of Two-Sender Unicast Index Coding Problems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1