Forecasting Short Term Wind Energy Generation using Machine Learning

Noman Shabbir, Roya Ahmadiahangar, L. Kütt, M. N. Iqbal, A. Rosin
{"title":"Forecasting Short Term Wind Energy Generation using Machine Learning","authors":"Noman Shabbir, Roya Ahmadiahangar, L. Kütt, M. N. Iqbal, A. Rosin","doi":"10.1109/RTUCON48111.2019.8982365","DOIUrl":null,"url":null,"abstract":"Wind power is very different from other sources due to its volatile and stochastic nature. The forecasting of wind energy generation is a very important aspect for the reliability and challenges regarding balancing the supply and demand in power systems. In this paper, Support Vector Machine (SVM) based regression algorithm is used for one day ahead prediction of wind energy production in Estonia. The proposed algorithm is then compared with the results of the prediction algorithm used by the Estonian energy regulatory organization. The results indicate that our proposed algorithms give better forecasting and the lowest Root Mean Square Error (RMSE) values.","PeriodicalId":317349,"journal":{"name":"2019 IEEE 60th International Scientific Conference on Power and Electrical Engineering of Riga Technical University (RTUCON)","volume":"80 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 60th International Scientific Conference on Power and Electrical Engineering of Riga Technical University (RTUCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RTUCON48111.2019.8982365","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

Abstract

Wind power is very different from other sources due to its volatile and stochastic nature. The forecasting of wind energy generation is a very important aspect for the reliability and challenges regarding balancing the supply and demand in power systems. In this paper, Support Vector Machine (SVM) based regression algorithm is used for one day ahead prediction of wind energy production in Estonia. The proposed algorithm is then compared with the results of the prediction algorithm used by the Estonian energy regulatory organization. The results indicate that our proposed algorithms give better forecasting and the lowest Root Mean Square Error (RMSE) values.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用机器学习预测短期风能发电
由于风能的不稳定性和随机性,它与其他能源非常不同。风力发电预测是解决电力系统可靠性问题的一个重要方面,也是解决电力系统供需平衡问题的一个挑战。本文采用基于支持向量机(SVM)的回归算法对爱沙尼亚风电产量进行了一天前预测。然后将提出的算法与爱沙尼亚能源监管组织使用的预测算法的结果进行比较。结果表明,我们提出的算法具有较好的预测效果和最低的均方根误差(RMSE)值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Stochastic Nonlinear Excitation Controller for Transient Stabilization in a Power System Analysis of Cost Function Composition based on the Horizon Time Prediction of an Indirect MPC Current Control in Single-Phase Grid-Connected PV Inverters A Space Vector Based Tool for the Visualisation of Induction Machine Operation Modes Effects of PWM Dimming LED Illumination on Camera Images and Countermeasures Demonstration of the use of robotics in the development of a scrap processing model for mechatronic education
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1