Cognitive State Classification using Genetic Algorithm based Linear Collaborative Discriminant Regression

K. Gupta, P. Chatur
{"title":"Cognitive State Classification using Genetic Algorithm based Linear Collaborative Discriminant Regression","authors":"K. Gupta, P. Chatur","doi":"10.1109/ICSCCC.2018.8703280","DOIUrl":null,"url":null,"abstract":"Functional Magnetic Resonance imaging (fMRI) provides sequence of 3D images which contains large number of voxels as information. There are many statistical methods evolved in last few years to analyze this information. Main concern of all these techniques is huge dimensions of the data produced by these images. This paper proposes an efficient hybrid method for feature selection and classification. This method combine entropy based genetic algorithm (EGA) with Linear Collaborative Discriminant Regression Classification (LCDRC) to form feature based classification method. Entropy based genetic algorithm is applied to find maximum significance between the input and output and also it radically reduces the redundancy within the input features. Experiments’ using Star-Plus dataset to classify fMRI images shows that EGA-LCDRC reduces up to 60% features and produces 96.73% accuracy.","PeriodicalId":148491,"journal":{"name":"2018 First International Conference on Secure Cyber Computing and Communication (ICSCCC)","volume":"531 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 First International Conference on Secure Cyber Computing and Communication (ICSCCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSCCC.2018.8703280","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Functional Magnetic Resonance imaging (fMRI) provides sequence of 3D images which contains large number of voxels as information. There are many statistical methods evolved in last few years to analyze this information. Main concern of all these techniques is huge dimensions of the data produced by these images. This paper proposes an efficient hybrid method for feature selection and classification. This method combine entropy based genetic algorithm (EGA) with Linear Collaborative Discriminant Regression Classification (LCDRC) to form feature based classification method. Entropy based genetic algorithm is applied to find maximum significance between the input and output and also it radically reduces the redundancy within the input features. Experiments’ using Star-Plus dataset to classify fMRI images shows that EGA-LCDRC reduces up to 60% features and produces 96.73% accuracy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于遗传算法的线性协同判别回归认知状态分类
功能磁共振成像(fMRI)提供包含大量体素的三维图像序列作为信息。在过去的几年里,有许多统计方法发展出来来分析这些信息。所有这些技术的主要关注点是这些图像产生的数据的巨大维度。提出了一种高效的特征选择与分类混合方法。该方法将基于熵的遗传算法(EGA)与线性协同判别回归分类(LCDRC)相结合,形成基于特征的分类方法。采用基于熵的遗传算法寻找输入和输出之间的最大显著性,从根本上减少了输入特征内部的冗余。使用Star-Plus数据集对fMRI图像进行分类的实验表明,EGA-LCDRC减少了高达60%的特征,准确率达到96.73%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
To Alleviate The Flooding Attack and Intensify Efficiency in MANET Deep Leaming Approaches for Brain Tumor Segmentation: A Review Q-AODV: A Flood control Ad-Hoc on Demand Distance Vector Routing Protocol Sentimental Analysis On Social Feeds to Predict the Elections A Comparative study of various Video Tampering detection methods
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1