ANALYSIS OF DIFFERENT PARTITIONING SCHEMES FOR PARALLEL GRAM-SCHMIDT ALGORITHMS

S. Oliveira, L. Borges, M. Holzrichter, T. Soma
{"title":"ANALYSIS OF DIFFERENT PARTITIONING SCHEMES FOR PARALLEL GRAM-SCHMIDT ALGORITHMS","authors":"S. Oliveira, L. Borges, M. Holzrichter, T. Soma","doi":"10.1080/10637199808947392","DOIUrl":null,"url":null,"abstract":"In this paper we analyze implementations of parallel Gram-Schmidt orthogonalization algorithms. One of the first parallel orthogonalization of Gram-Schmidt was the row-wise partitioning of O'Leary and Whitman. In this paper we describe a pipelined implementation which uses column-wise partitioning schemes. Timing models for the column-wise parallel algorithms are derived. We compare our column-wise partitionings against the row-wise partitioning and validate our study with computational results. The pipelined orthogonalization algorithm is important because the timing analysis is independent of the architecture model. Threshold values of m max, which is the number of rows where row partitioning becomes better than column partitioning are found theoretically and verified with our experiments","PeriodicalId":406098,"journal":{"name":"Parallel Algorithms and Applications","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Parallel Algorithms and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/10637199808947392","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

In this paper we analyze implementations of parallel Gram-Schmidt orthogonalization algorithms. One of the first parallel orthogonalization of Gram-Schmidt was the row-wise partitioning of O'Leary and Whitman. In this paper we describe a pipelined implementation which uses column-wise partitioning schemes. Timing models for the column-wise parallel algorithms are derived. We compare our column-wise partitionings against the row-wise partitioning and validate our study with computational results. The pipelined orthogonalization algorithm is important because the timing analysis is independent of the architecture model. Threshold values of m max, which is the number of rows where row partitioning becomes better than column partitioning are found theoretically and verified with our experiments
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
并行gram-schmidt算法的不同划分方案分析
本文分析了并行Gram-Schmidt正交化算法的实现。Gram-Schmidt的第一个平行正交化是O'Leary和Whitman的逐行划分。在本文中,我们描述了一个使用列分区方案的流水线实现。推导了列并行算法的时序模型。我们比较了列分区和行分区,并用计算结果验证了我们的研究。流水线正交化算法非常重要,因为时序分析与体系结构模型无关。从理论上找到了mmax的阈值,即行分区优于列分区的行数,并通过我们的实验进行了验证
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fast and scalable parallel matrix computations with reconfigurable pipelined optical buses A comparative study of explicit group iterative solvers on a cluster of workstations FPGA implementation of a Cholesky algorithm for a shared-memory multiprocessor architecture Application of MPI-IO in Parallel Particle Transport Monte-Carlo Simulation Cost-effective modeling for natural resource distribution systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1