Intelligent Incipient Fault Detection in Wind Turbines based on Industrial IoT Environment

color rgb, text-indent px, letter-spacing normal, font-family Helvetica, font-size px, font-style normal, font-weight, word-spacing px, display inline important, white-space normal, orphans, widows, background-color rgb, font-variant-ligatures normal, font-variant-ligatures normal, webkit-text-stroke-width px, text-decoration-style initial, text-decoration-color initial, P. H. F. D. Sousa, Navar de Medeiros M. e Nascimento sup, Jefferson S. Almeida sup, Pedro P. Rebouças Filho sup, Victor Hugo C. de Albuquerque sup, span
{"title":"Intelligent Incipient Fault Detection in Wind Turbines based on Industrial IoT Environment","authors":"color rgb, text-indent px, letter-spacing normal, font-family Helvetica, font-size px, font-style normal, font-weight, word-spacing px, display inline important, white-space normal, orphans, widows, background-color rgb, font-variant-ligatures normal, font-variant-ligatures normal, webkit-text-stroke-width px, text-decoration-style initial, text-decoration-color initial, P. H. F. D. Sousa, Navar de Medeiros M. e Nascimento sup, Jefferson S. Almeida sup, Pedro P. Rebouças Filho sup, Victor Hugo C. de Albuquerque sup, span","doi":"10.33969/AIS.2019.11001","DOIUrl":null,"url":null,"abstract":"The eagerness and necessity to develop so-called smart applications has taken the Internet of Things (IoT) to a whole new level. Industry has been implementing services that use IoT to increase productivity as well as management systems over the past couple of years. Such services are now encroaching on wind energy, which nowadays is the most acceptable source among renewable energies for electricity generation. This work proposes an intelligent system to identify incipient faults in the electric generators of wind turbines to improve maintenance routines. Four feature extraction methods were applied to vibration signals, and different classifiers were used to predict the running status of the wind turbine. We correctly identified 94.44% of normal conditions, reducing the false positive and negative rates to 0.4% and 1.84%, respectively; a better result than other approaches already reported in the literature.","PeriodicalId":273028,"journal":{"name":"Journal of Artificial Intelligence and Systems","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"62","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Artificial Intelligence and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33969/AIS.2019.11001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 62

Abstract

The eagerness and necessity to develop so-called smart applications has taken the Internet of Things (IoT) to a whole new level. Industry has been implementing services that use IoT to increase productivity as well as management systems over the past couple of years. Such services are now encroaching on wind energy, which nowadays is the most acceptable source among renewable energies for electricity generation. This work proposes an intelligent system to identify incipient faults in the electric generators of wind turbines to improve maintenance routines. Four feature extraction methods were applied to vibration signals, and different classifiers were used to predict the running status of the wind turbine. We correctly identified 94.44% of normal conditions, reducing the false positive and negative rates to 0.4% and 1.84%, respectively; a better result than other approaches already reported in the literature.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于工业物联网环境的风电机组早期故障智能检测
开发所谓智能应用程序的渴望和必要性将物联网(IoT)提升到了一个全新的水平。在过去的几年里,行业一直在实施使用物联网来提高生产力和管理系统的服务。这些服务现在正在蚕食风能,风能是当今可再生能源中最受欢迎的发电来源。本工作提出了一种智能系统来识别风力发电机组的早期故障,以改善维护程序。采用四种特征提取方法对振动信号进行特征提取,并采用不同的分类器对风力机的运行状态进行预测。正常情况的正确率为94.44%,假阳性率和阴性率分别降至0.4%和1.84%;结果比文献中报道的其他方法更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Intelligent Virtual Reality Therapy Systems for Motor and Cognitive Rehabilitation: A Survey based on Clinical Trial Studies Automated Multimodal image fusion for brain tumor detection Intelligent Technology to Enhance Policing and Public Accountability Emotion Recognition and Detection Methods: A Comprehensive Survey GIST: Gesture-free Interaction by the Status of Thumb; an interaction technique for Virtual Environments
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1