Modeling Uncertainty in Group Recommendations

Dimitris Sacharidis
{"title":"Modeling Uncertainty in Group Recommendations","authors":"Dimitris Sacharidis","doi":"10.1145/3314183.3324987","DOIUrl":null,"url":null,"abstract":"In many settings, it is required that items are recommended to a group of users instead of a single user. Most often, when the decision criteria and preferences of the group as a whole are not known, the gold standard is to aggregate individual member preferences or recommendations. Such techniques typically presuppose some process under which group members reach consensus, e.g., least misery, maximum satisfaction, disregarding any uncertainty on whether this presumption is accurate. We propose a different approach that explicitly models the system's uncertainty in the way members might agree on a group ranking. The basic idea is to quantify the likelihood of hypothetical group rankings based on the observed member's individual rankings. Then, the systems recommends a ranking that has the highest expected reward with respect to the hypothetical rankings. Experiments with real and synthetic groups demonstrate the superiority of this approach compared to previous work based on aggregation strategies and to recent fairness-aware techniques.","PeriodicalId":240482,"journal":{"name":"Adjunct Publication of the 27th Conference on User Modeling, Adaptation and Personalization","volume":"534 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Adjunct Publication of the 27th Conference on User Modeling, Adaptation and Personalization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3314183.3324987","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In many settings, it is required that items are recommended to a group of users instead of a single user. Most often, when the decision criteria and preferences of the group as a whole are not known, the gold standard is to aggregate individual member preferences or recommendations. Such techniques typically presuppose some process under which group members reach consensus, e.g., least misery, maximum satisfaction, disregarding any uncertainty on whether this presumption is accurate. We propose a different approach that explicitly models the system's uncertainty in the way members might agree on a group ranking. The basic idea is to quantify the likelihood of hypothetical group rankings based on the observed member's individual rankings. Then, the systems recommends a ranking that has the highest expected reward with respect to the hypothetical rankings. Experiments with real and synthetic groups demonstrate the superiority of this approach compared to previous work based on aggregation strategies and to recent fairness-aware techniques.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
小组建议中的不确定性建模
在许多设置中,需要将项目推荐给一组用户,而不是单个用户。大多数情况下,当团队作为一个整体的决策标准和偏好未知时,黄金标准是汇总单个成员的偏好或建议。这类技术通常预设了一些过程,在这个过程中,团队成员达成了共识,例如,最少的痛苦,最大的满足,而忽略了这种假设是否准确的任何不确定性。我们提出了一种不同的方法,以成员可能同意群体排名的方式明确地模拟系统的不确定性。其基本思想是根据观察到的成员的个人排名来量化假设的群体排名的可能性。然后,系统推荐一个相对于假设排名具有最高预期奖励的排名。真实和合成群体的实验表明,与先前基于聚合策略的工作和最近的公平感知技术相比,这种方法具有优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Shaping the Reaction: Community Characteristics and Emotional Tone of Citizen Responses to Robotics Videos at TED versus YouTube Supporting the Exploration of Cultural Heritage Information via Search Behavior Analysis Exer-model: A User Model for Scrutinising Long-term Models of Physical Activity from Multiple Sensors NEAR: A Partner to Explain Any Factorised Recommender System Tikkoun Sofrim: A WebApp for Personalization and Adaptation of Crowdsourcing Transcriptions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1