FAZ: A flexible auto-tuned modular error-bounded compression framework for scientific data

Jinyang Liu, S. Di, Kai Zhao, Xin Liang, Zizhong Chen, F. Cappello
{"title":"FAZ: A flexible auto-tuned modular error-bounded compression framework for scientific data","authors":"Jinyang Liu, S. Di, Kai Zhao, Xin Liang, Zizhong Chen, F. Cappello","doi":"10.1145/3577193.3593721","DOIUrl":null,"url":null,"abstract":"Error-bounded lossy compression has been effective to resolve the big scientific data issue because it has a great potential to significantly reduce the data volume while allowing users to control data distortion based on specified error bounds. However, none of the existing error-bounded lossy compressors can always obtain the best compression quality because of the diverse characteristics of different datasets. In this paper, we develop FAZ, a flexible and adaptive error-bounded lossy compression framework, which projects a fairly high capability of adapting to diverse datasets. FAZ can always keep the compression quality at the best level compared with other state-of-the-art compressors for different datasets. We perform a comprehensive evaluation using 6 real-world scientific applications and 6 other state-of-the-art error-bounded lossy compressors. Experiments show that compared with the other existing lossy compressors, FAZ can improve the compression ratio by up to 120%, 190%, and 75% when setting the same error bound, the same PSNR and the same SSIM, respectively.","PeriodicalId":424155,"journal":{"name":"Proceedings of the 37th International Conference on Supercomputing","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 37th International Conference on Supercomputing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3577193.3593721","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Error-bounded lossy compression has been effective to resolve the big scientific data issue because it has a great potential to significantly reduce the data volume while allowing users to control data distortion based on specified error bounds. However, none of the existing error-bounded lossy compressors can always obtain the best compression quality because of the diverse characteristics of different datasets. In this paper, we develop FAZ, a flexible and adaptive error-bounded lossy compression framework, which projects a fairly high capability of adapting to diverse datasets. FAZ can always keep the compression quality at the best level compared with other state-of-the-art compressors for different datasets. We perform a comprehensive evaluation using 6 real-world scientific applications and 6 other state-of-the-art error-bounded lossy compressors. Experiments show that compared with the other existing lossy compressors, FAZ can improve the compression ratio by up to 120%, 190%, and 75% when setting the same error bound, the same PSNR and the same SSIM, respectively.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
FAZ:一个灵活的自动调整的模块化错误限制压缩框架,用于科学数据
错误界有损压缩在允许用户根据指定的错误界控制数据失真的同时,具有显著减少数据量的巨大潜力,是解决大科学数据问题的有效方法。然而,由于不同数据集的特性不同,现有的误差有界有损压缩器都不能始终获得最佳的压缩质量。在本文中,我们开发了一种灵活的自适应错误有界有损压缩框架FAZ,它具有相当高的适应各种数据集的能力。与其他最先进的压缩器相比,FAZ可以始终将不同数据集的压缩质量保持在最佳水平。我们使用6个真实世界的科学应用程序和6个其他最先进的误差有界有损压缩机进行全面评估。实验表明,在相同的误差界、相同的PSNR和相同的SSIM条件下,FAZ与现有的其他有损压缩器相比,压缩比分别提高了120%、190%和75%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
FLORIA: A Fast and Featherlight Approach for Predicting Cache Performance FT-topo: Architecture-Driven Folded-Triangle Partitioning for Communication-efficient Graph Processing Using Additive Modifications in LU Factorization Instead of Pivoting GRAP: Group-level Resource Allocation Policy for Reconfigurable Dragonfly Network in HPC Enabling Reconfigurable HPC through MPI-based Inter-FPGA Communication
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1