Nonlinear Cross-Domain Feature Representation Learning Method Based on Dual Constraints

Han Ding, Yuhong Zhang, Shuai Yang, Yaojin Lin
{"title":"Nonlinear Cross-Domain Feature Representation Learning Method Based on Dual Constraints","authors":"Han Ding, Yuhong Zhang, Shuai Yang, Yaojin Lin","doi":"10.1109/ICBK.2019.00017","DOIUrl":null,"url":null,"abstract":"Feature representation learning is a research focus in domain adaptation. Recently, due to the fast training speed, the marginalized Denoising Autoencoder (mDA) as a standing deep learning model has been widely utilized for feature representation learning. However, the training of mDA suffers from the lack of nonlinear relationship and does not explicitly consider the distribution discrepancy between domains. To address these problems, this paper proposes a novel method for feature representation learning, namely Nonlinear cross-domain Feature learning based Dual Constraints (NFDC), which consists of kernelization and dual constraints. Firstly, we introduce kernelization to effectively extract nonlinear relationship in feature representation learning. Secondly, we design dual constraints including Maximum Mean Discrepancy (MMD) and Manifold Regularization (MR) in order to minimize distribution discrepancy during the training process. Experimental results show that our approach is superior to several state-of-the-art methods in domain adaptation tasks.","PeriodicalId":383917,"journal":{"name":"2019 IEEE International Conference on Big Knowledge (ICBK)","volume":"159 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Conference on Big Knowledge (ICBK)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICBK.2019.00017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Feature representation learning is a research focus in domain adaptation. Recently, due to the fast training speed, the marginalized Denoising Autoencoder (mDA) as a standing deep learning model has been widely utilized for feature representation learning. However, the training of mDA suffers from the lack of nonlinear relationship and does not explicitly consider the distribution discrepancy between domains. To address these problems, this paper proposes a novel method for feature representation learning, namely Nonlinear cross-domain Feature learning based Dual Constraints (NFDC), which consists of kernelization and dual constraints. Firstly, we introduce kernelization to effectively extract nonlinear relationship in feature representation learning. Secondly, we design dual constraints including Maximum Mean Discrepancy (MMD) and Manifold Regularization (MR) in order to minimize distribution discrepancy during the training process. Experimental results show that our approach is superior to several state-of-the-art methods in domain adaptation tasks.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于对偶约束的非线性跨域特征表示学习方法
特征表示学习是领域自适应中的一个研究热点。近年来,边缘去噪自编码器(mDA)由于训练速度快,作为一种成熟的深度学习模型被广泛应用于特征表示学习。然而,mDA的训练缺乏非线性关系,没有明确考虑域之间的分布差异。为了解决这些问题,本文提出了一种新的特征表示学习方法,即基于对偶约束的非线性跨域特征学习(NFDC),该方法由核化和对偶约束组成。首先,在特征表示学习中引入核化,有效提取非线性关系。其次,为了最小化训练过程中的分布差异,我们设计了包括最大均值差异(MMD)和流形正则化(MR)在内的对偶约束。实验结果表明,该方法在领域自适应任务中优于几种最先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Two-Stage Clustering Algorithm Based on Improved K-Means and Density Peak Clustering Matrix Profile XX: Finding and Visualizing Time Series Motifs of All Lengths using the Matrix Profile A Spatial Co-location Pattern Mining Algorithm Without Distance Thresholds Adaptive Structural Co-regularization for Unsupervised Multi-view Feature Selection Which Patient to Treat Next? Probabilistic Stream-Based Reasoning for Decision Support and Monitoring
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1