B. Zhestkov, A. Kireev, A. Zaytsev, Sergey V. Chertnov, V. L. Yumashev
{"title":"Numerical Simulation of Non-equilibrium Flow in the Nozzle of VAT-104 Wind Tunnel","authors":"B. Zhestkov, A. Kireev, A. Zaytsev, Sergey V. Chertnov, V. L. Yumashev","doi":"10.33257/PHCHGD.19.2.746","DOIUrl":null,"url":null,"abstract":"Numerical simulation of high enthalpy flow in the nozzle of wind tunnel VAT-104 is carried out using a detailed model of nonequilibrium physical and chemical processes. An implicit staggered-grid scheme of the second order of accuracy is used to approximate the governing equations. The goals of this modeling are: (1) to test a numerical approach to simulate high temperature nonequilibrium flows, (2) to determine the role of processes important for energy exchange at the nozzle flow conditions, (3) to get numerical values of species mass fractions and molecule vibration temperatures along the nozzle and at the entry to the test part. The illustrations below show the profile of VAT-104 nozzle, the difference scheme stencils, the N and N 2 mass fraction profiles and vibration temperatures profiles along the nozzle.","PeriodicalId":309290,"journal":{"name":"Physical-Chemical Kinetics in Gas Dynamics","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical-Chemical Kinetics in Gas Dynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33257/PHCHGD.19.2.746","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Numerical simulation of high enthalpy flow in the nozzle of wind tunnel VAT-104 is carried out using a detailed model of nonequilibrium physical and chemical processes. An implicit staggered-grid scheme of the second order of accuracy is used to approximate the governing equations. The goals of this modeling are: (1) to test a numerical approach to simulate high temperature nonequilibrium flows, (2) to determine the role of processes important for energy exchange at the nozzle flow conditions, (3) to get numerical values of species mass fractions and molecule vibration temperatures along the nozzle and at the entry to the test part. The illustrations below show the profile of VAT-104 nozzle, the difference scheme stencils, the N and N 2 mass fraction profiles and vibration temperatures profiles along the nozzle.