Multi-dataset Low-rank Matrix Factorization

Hossein Valavi, P. Ramadge
{"title":"Multi-dataset Low-rank Matrix Factorization","authors":"Hossein Valavi, P. Ramadge","doi":"10.1109/CISS.2019.8692932","DOIUrl":null,"url":null,"abstract":"Low-rank matrix factorization can reveal fundamental structure in data. For example, joint-PCA on multi-datasets can find a joint, lower-dimensional representation of the data. Recently other similar matrix factorization methods have been introduced for multi-dataset analysis, e.g., the shared response model (SRM) and hyperalignment (HA). We provide a comparison of these methods with joint-PCA that highlights similarities and differences. Necessary and sufficient conditions under which the solution set to SRM and HA can be derived from the joint-PCA are identified. In particular, if there exists a common template and a set of generalized rotation matrices through which datasets can be exactly aligned to the template, then for any number of features, SRM and HA solutions can be readily derived from the joint-PCA of datasets. Not surprisingly, this assumption fails to hold for complex multi-datasets, e.g., multi-subject fMRI datasets. We show that if the desired conditions are not satisfied, joint-PCA can easily over-fit to the training data when the dimension of the projected space is high (~> 50). We also examine how well low-dimensional matrix factorization can be computed using gradient descent-type algorithms using Google’s TensorFlow library.","PeriodicalId":123696,"journal":{"name":"2019 53rd Annual Conference on Information Sciences and Systems (CISS)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 53rd Annual Conference on Information Sciences and Systems (CISS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CISS.2019.8692932","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Low-rank matrix factorization can reveal fundamental structure in data. For example, joint-PCA on multi-datasets can find a joint, lower-dimensional representation of the data. Recently other similar matrix factorization methods have been introduced for multi-dataset analysis, e.g., the shared response model (SRM) and hyperalignment (HA). We provide a comparison of these methods with joint-PCA that highlights similarities and differences. Necessary and sufficient conditions under which the solution set to SRM and HA can be derived from the joint-PCA are identified. In particular, if there exists a common template and a set of generalized rotation matrices through which datasets can be exactly aligned to the template, then for any number of features, SRM and HA solutions can be readily derived from the joint-PCA of datasets. Not surprisingly, this assumption fails to hold for complex multi-datasets, e.g., multi-subject fMRI datasets. We show that if the desired conditions are not satisfied, joint-PCA can easily over-fit to the training data when the dimension of the projected space is high (~> 50). We also examine how well low-dimensional matrix factorization can be computed using gradient descent-type algorithms using Google’s TensorFlow library.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多数据集低秩矩阵分解
低秩矩阵分解可以揭示数据的基本结构。例如,多数据集上的联合pca可以找到数据的联合、低维表示。最近,其他类似的矩阵分解方法也被引入到多数据集分析中,例如共享响应模型(SRM)和超校准(HA)。我们提供了这些方法与联合pca的比较,突出了相似性和差异性。给出了由联合主成分分析得到SRM和HA解集的充分必要条件。特别是,如果存在一个通用模板和一组广义旋转矩阵,数据集可以通过该模板精确对齐,那么对于任意数量的特征,可以很容易地从数据集的联合主成分分析中导出SRM和HA解决方案。不足为奇的是,这一假设在复杂的多数据集(如多主体fMRI数据集)中不成立。我们发现,如果不满足期望条件,当投影空间的维数很高(~> 50)时,联合pca很容易过度拟合训练数据。我们还研究了使用谷歌的TensorFlow库使用梯度下降型算法计算低维矩阵分解的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Prospect Theoretical Extension of a Communication Game Under Jamming Smoothed First-order Algorithms for Expectation-valued Constrained Problems Secure Key Generation for Distributed Inference in IoT Invited Presentation Exponential Error Bounds and Decoding Complexity for Block Codes Constructed by Unit Memory Trellis Codes of Branch Length Two Deep learning to detect catheter tips in vivo during photoacoustic-guided catheter interventions : Invited Presentation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1