{"title":"Effect of rotor field winding MMF on performance of grid-compliant hybrid-PM slip synchronous wind generator","authors":"L. L. Amuhaya, M. Kamper","doi":"10.1109/PowerAfrica.2016.7556612","DOIUrl":null,"url":null,"abstract":"Grid-compliant wind-turbine systems require compensation of reactive power into the grid to maintain voltages and increase power system stability under variable load levels. To provide a solution a conventional PM synchronous generator of a slip synchronous wind generator system is upgraded to a hybrid-PM synchronous generator (hybrid-PMSG) by introducing slots in the rotor that are wound with field coils. In this way the flux in the generator and reactive power can be controlled by rotor-field MMF control. In addition, it is possible to operate the wind generator as synchronous condenser under zero-wind conditions so that it will act as a source of lagging and leading VARs to the grid. In this paper the effects of the rotor field winding MMF of the proposed hybrid-PMSG and its performance as a source of dynamic VARs (both capacitive and inductive) of a grid compliant slip synchronous wind-turbine system are described.","PeriodicalId":177444,"journal":{"name":"2016 IEEE PES PowerAfrica","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE PES PowerAfrica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PowerAfrica.2016.7556612","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
Grid-compliant wind-turbine systems require compensation of reactive power into the grid to maintain voltages and increase power system stability under variable load levels. To provide a solution a conventional PM synchronous generator of a slip synchronous wind generator system is upgraded to a hybrid-PM synchronous generator (hybrid-PMSG) by introducing slots in the rotor that are wound with field coils. In this way the flux in the generator and reactive power can be controlled by rotor-field MMF control. In addition, it is possible to operate the wind generator as synchronous condenser under zero-wind conditions so that it will act as a source of lagging and leading VARs to the grid. In this paper the effects of the rotor field winding MMF of the proposed hybrid-PMSG and its performance as a source of dynamic VARs (both capacitive and inductive) of a grid compliant slip synchronous wind-turbine system are described.