R. Birken, Douglas E. Miller, M. Burns, P. Albats, Robert Casadonte, R. Deming, Tony Derubeis, T. Hansen, M. Oristaglio
{"title":"Efficient large-scale underground utility mapping in New York City using a multichannel ground-penetrating imaging radar system","authors":"R. Birken, Douglas E. Miller, M. Burns, P. Albats, Robert Casadonte, R. Deming, Tony Derubeis, T. Hansen, M. Oristaglio","doi":"10.1117/12.462307","DOIUrl":null,"url":null,"abstract":"Ground-penetrating imaging radar (\"GPiR\") combines standard GPR with accurate positioning and advanced signal processing to create three-dimensional (3D) images of the shallow subsurface. These images can reveal soil conditions and buried infrastructure typically down to depths of about 2-3m with high resolution. A commercial GPiR called the CART Imaging System, which was designed for mapping urban infrastructure, has been developed. The CART system uses a radar array consisting of 17 antennas (9 transmitters and 8 receivers) that cover a 2m swath on the ground and can collect data while moving at speeds up to about 1 km/h. A laser theodolite tracks the position of the array during operation. The system collects enough data in a single pass to form a 3D image beneath its track; side-by-side passes are stitched together to create a seamless image of the subsurface. GPiR was first tested on a large scale in a project that mapped an area of approximately 12,000m2 in the south Bronx in four nights. Positions of surface features were also surveyed with the theodolite to provide a local reference grid. Final images were visualized with large-scale maps and electronic movies that scroll through the 3D data volume and show the enormous complexity of the subsurface in large cities.","PeriodicalId":256772,"journal":{"name":"International Conference on Ground Penetrating Radar","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Ground Penetrating Radar","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.462307","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30
Abstract
Ground-penetrating imaging radar ("GPiR") combines standard GPR with accurate positioning and advanced signal processing to create three-dimensional (3D) images of the shallow subsurface. These images can reveal soil conditions and buried infrastructure typically down to depths of about 2-3m with high resolution. A commercial GPiR called the CART Imaging System, which was designed for mapping urban infrastructure, has been developed. The CART system uses a radar array consisting of 17 antennas (9 transmitters and 8 receivers) that cover a 2m swath on the ground and can collect data while moving at speeds up to about 1 km/h. A laser theodolite tracks the position of the array during operation. The system collects enough data in a single pass to form a 3D image beneath its track; side-by-side passes are stitched together to create a seamless image of the subsurface. GPiR was first tested on a large scale in a project that mapped an area of approximately 12,000m2 in the south Bronx in four nights. Positions of surface features were also surveyed with the theodolite to provide a local reference grid. Final images were visualized with large-scale maps and electronic movies that scroll through the 3D data volume and show the enormous complexity of the subsurface in large cities.