Learning to Rank for Query-Focused Multi-document Summarization

Chao Shen, Tao Li
{"title":"Learning to Rank for Query-Focused Multi-document Summarization","authors":"Chao Shen, Tao Li","doi":"10.1109/ICDM.2011.91","DOIUrl":null,"url":null,"abstract":"In this paper, we explore how to use ranking SVM to train the feature weights for query-focused multi-document summarization. To apply a supervised learning method to sentence extraction in multi-document summarization, we need to derive the sentence labels for training corpus from the existing human labeling data in form of. However, this process is not trivial, because the human summaries are abstractive, and do not necessarily well match the sentences in the documents. In this paper, we try to address the above problem from the following two aspects. First, we make use of sentence-to-sentence relationships to better estimate the probability of a sentence in the document set to be a summary sentence. Second, to make the derived training data less sensitive, we adopt a cost sensitive loss in the ranking SVM's objective function. The experimental results demonstrate the effectiveness of our proposed method.","PeriodicalId":106216,"journal":{"name":"2011 IEEE 11th International Conference on Data Mining","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"35","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE 11th International Conference on Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDM.2011.91","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 35

Abstract

In this paper, we explore how to use ranking SVM to train the feature weights for query-focused multi-document summarization. To apply a supervised learning method to sentence extraction in multi-document summarization, we need to derive the sentence labels for training corpus from the existing human labeling data in form of. However, this process is not trivial, because the human summaries are abstractive, and do not necessarily well match the sentences in the documents. In this paper, we try to address the above problem from the following two aspects. First, we make use of sentence-to-sentence relationships to better estimate the probability of a sentence in the document set to be a summary sentence. Second, to make the derived training data less sensitive, we adopt a cost sensitive loss in the ranking SVM's objective function. The experimental results demonstrate the effectiveness of our proposed method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
学习以查询为中心的多文档摘要排序
在本文中,我们探索了如何使用排序支持向量机来训练以查询为中心的多文档摘要的特征权重。为了将监督学习方法应用于多文档摘要中的句子提取,我们需要从现有的人类标注数据中以形式派生出训练语料库的句子标注。然而,这个过程并不是微不足道的,因为人类的摘要是抽象的,并且不一定与文档中的句子很好地匹配。在本文中,我们试图从以下两个方面来解决上述问题。首先,我们利用句与句之间的关系来更好地估计文档集中某个句子成为总结句的概率。其次,为了降低得到的训练数据的敏感性,我们在排序支持向量机的目标函数中采用了代价敏感损失。实验结果证明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Nonnegative Matrix Tri-factorization Based High-Order Co-clustering and Its Fast Implementation Helix: Unsupervised Grammar Induction for Structured Activity Recognition Partitionable Kernels for Mapping Kernels Multi-task Learning for Bayesian Matrix Factorization Discovering the Intrinsic Cardinality and Dimensionality of Time Series Using MDL
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1