Statistical Shipping Noise Characterization and Mitigation for Underwater Acoustic Communications

Lazar Atanackovic, Ruoyu Zhang, L. Lampe, R. Diamant
{"title":"Statistical Shipping Noise Characterization and Mitigation for Underwater Acoustic Communications","authors":"Lazar Atanackovic, Ruoyu Zhang, L. Lampe, R. Diamant","doi":"10.1109/OCEANSE.2019.8867520","DOIUrl":null,"url":null,"abstract":"Achieving high data rate robust communication in shallow and harbour underwater acoustic (UA) environments can be a demanding challenge in the presence of shipping noise. Noise generated from nearby passing ships can lead to impulsive agitations which impair UA communication systems. Utilizing the assumption that impulse noise exhibits sparsity, we realize a compressed sensing (CS) based framework for noise estimation exploiting the pilot sub-carriers of UA orthogonal frequency-division modulation systems. Under the CS framework, we propose the use of a empirical Bayesian approach which first characterizes the statistical properties of shipping noise prior to conceiving an estimate. In addition, we invoke the K-SVD algorithm for dictionary learning. K-SVD iteratively forms a sparse representation for the class of shipping noise signals, which is later used for noise estimation. Numerical results show that the empirical Bayesian based signal recovery algorithm yields the best performance for interference estimation.","PeriodicalId":375793,"journal":{"name":"OCEANS 2019 - Marseille","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"OCEANS 2019 - Marseille","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/OCEANSE.2019.8867520","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Achieving high data rate robust communication in shallow and harbour underwater acoustic (UA) environments can be a demanding challenge in the presence of shipping noise. Noise generated from nearby passing ships can lead to impulsive agitations which impair UA communication systems. Utilizing the assumption that impulse noise exhibits sparsity, we realize a compressed sensing (CS) based framework for noise estimation exploiting the pilot sub-carriers of UA orthogonal frequency-division modulation systems. Under the CS framework, we propose the use of a empirical Bayesian approach which first characterizes the statistical properties of shipping noise prior to conceiving an estimate. In addition, we invoke the K-SVD algorithm for dictionary learning. K-SVD iteratively forms a sparse representation for the class of shipping noise signals, which is later used for noise estimation. Numerical results show that the empirical Bayesian based signal recovery algorithm yields the best performance for interference estimation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
水声通信中船舶噪声的统计特性和抑制
在船舶噪声存在的情况下,在浅水和港口水声(UA)环境中实现高数据速率的鲁棒通信可能是一项艰巨的挑战。附近过往船只产生的噪声会导致脉冲扰动,从而损害UA通信系统。基于脉冲噪声具有稀疏性的假设,利用UA正交频分调制系统的导频子载波,实现了一种基于压缩感知的噪声估计框架。在CS框架下,我们建议使用经验贝叶斯方法,该方法首先表征航运噪声的统计特性,然后再进行估计。此外,我们调用K-SVD算法进行字典学习。K-SVD迭代地形成一类船舶噪声信号的稀疏表示,随后用于噪声估计。数值结果表明,基于经验贝叶斯的信号恢复算法对干扰估计的效果最好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Data-driven Vessel Motion Model for Offshore Access Forecasting Decentralized System Intelligence in Data Driven Networks for Shipping Industrial Applications: Digital Models to Blockchain Technologies Robust 3D Shape Classification Method using Simulated Multi View Sonar Images and Convolutional Nueral Network Weighted Grid Partitioning for Panel-Based Bathymetric SLAM Fishing Spot Detection Using Sea Water Temperature Pattern by Nonlinear Clustering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1