HEVC Inter Coding using Deep Recurrent Neural Networks and Artificial Reference Pictures

Felix Haub, Thorsten Laude, J. Ostermann
{"title":"HEVC Inter Coding using Deep Recurrent Neural Networks and Artificial Reference Pictures","authors":"Felix Haub, Thorsten Laude, J. Ostermann","doi":"10.1109/PCS48520.2019.8954497","DOIUrl":null,"url":null,"abstract":"The efficiency of motion compensated prediction in modern video codecs highly depends on the available reference pictures. Occlusions and non-linear motion pose challenges for the motion compensation and often result in high bit rates for the prediction error. We propose the generation of artificial reference pictures using deep recurrent neural networks. Conceptually, a reference picture at the time instance of the currently coded picture is generated from previously reconstructed conventional reference pictures. Based on these artificial reference pictures, we propose a complete coding pipeline based on HEVC. By using the artificial reference pictures for motion compensated prediction, average BD-rate gains of 1.5% over HEVC are achieved.","PeriodicalId":237809,"journal":{"name":"2019 Picture Coding Symposium (PCS)","volume":"78 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Picture Coding Symposium (PCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PCS48520.2019.8954497","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

The efficiency of motion compensated prediction in modern video codecs highly depends on the available reference pictures. Occlusions and non-linear motion pose challenges for the motion compensation and often result in high bit rates for the prediction error. We propose the generation of artificial reference pictures using deep recurrent neural networks. Conceptually, a reference picture at the time instance of the currently coded picture is generated from previously reconstructed conventional reference pictures. Based on these artificial reference pictures, we propose a complete coding pipeline based on HEVC. By using the artificial reference pictures for motion compensated prediction, average BD-rate gains of 1.5% over HEVC are achieved.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于深度递归神经网络和人工参考图片的HEVC编码
在现代视频编解码器中,运动补偿预测的效率很大程度上取决于可用的参考图像。遮挡和非线性运动对运动补偿提出了挑战,并经常导致高比特率的预测误差。我们提出使用深度递归神经网络生成人工参考图像。从概念上讲,从先前重构的常规参考图像生成当前编码图像的时间实例处的参考图像。在这些人工参考图片的基础上,我们提出了一个完整的基于HEVC的编码流水线。通过使用人工参考图像进行运动补偿预测,平均bd速率比HEVC提高1.5%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Efficient Delivery of Very High Dynamic Range Compressed Imagery by Dynamic-Range-of-Interest Novel Coding Tools Based on Characteristics for Short Videos Extending Video Decoding Energy Models for 360° and HDR Video Formats in HEVC Generalized binary splits: A versatile partitioning scheme for block-based hybrid video coding An IBP-CNN Based Fast Block Partition For Intra Prediction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1