Occupational Exposure to Multi-Walled Carbon Nanotubes During Commercial Production Synthesis and Handling.

E. Kuijpers, C. Bekker, W. Fransman, D. Brouwer, P. Tromp, J. Vlaanderen, L. Godderis, P. Hoet, Q. Lan, D. Silverman, R. Vermeulen, A. Pronk
{"title":"Occupational Exposure to Multi-Walled Carbon Nanotubes During Commercial Production Synthesis and Handling.","authors":"E. Kuijpers, C. Bekker, W. Fransman, D. Brouwer, P. Tromp, J. Vlaanderen, L. Godderis, P. Hoet, Q. Lan, D. Silverman, R. Vermeulen, A. Pronk","doi":"10.1093/annhyg/mev082","DOIUrl":null,"url":null,"abstract":"The world-wide production of carbon nanotubes (CNTs) has increased substantially in the last decade, leading to occupational exposures. There is a paucity of exposure data of workers involved in the commercial production of CNTs. The goals of this study were to assess personal exposure to multi-walled carbon nanotubes (MWCNTs) during the synthesis and handling of MWCNTs in a commercial production facility and to link these exposure levels to specific activities. Personal full-shift filter-based samples were collected, during commercial production and handling of MWCNTs, R&D activities, and office work. The concentrations of MWCNT were evaluated on the basis of EC concentrations. Associations were studied between observed MWCNT exposure levels and location and activities. SEM analyses showed MWCNTs, present as agglomerates ranging between 200 nm and 100 µm. Exposure levels of MWCNTs observed in the production area during the full scale synthesis of MWCNTs (N = 23) were comparable to levels observed during further handling of MWCNTs (N = 19): (GM (95% lower confidence limit-95% upper confidence limit)) 41 μg m(-3) (20-88) versus 43 μg m(-3) (22-86), respectively. In the R&D area (N = 11) and the office (N = 5), exposure levels of MWCNTs were significantly (P < 0.05) lower: 5 μg m(-3) (2-11) and 7 μg m(-3) (2-28), respectively. Bagging, maintenance of the reactor, and powder conditioning were associated with higher exposure levels in the production area, whereas increased exposure levels in the R&D area were related to handling of MWCNTs powder.","PeriodicalId":342592,"journal":{"name":"The Annals of occupational hygiene","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"40","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Annals of occupational hygiene","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/annhyg/mev082","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 40

Abstract

The world-wide production of carbon nanotubes (CNTs) has increased substantially in the last decade, leading to occupational exposures. There is a paucity of exposure data of workers involved in the commercial production of CNTs. The goals of this study were to assess personal exposure to multi-walled carbon nanotubes (MWCNTs) during the synthesis and handling of MWCNTs in a commercial production facility and to link these exposure levels to specific activities. Personal full-shift filter-based samples were collected, during commercial production and handling of MWCNTs, R&D activities, and office work. The concentrations of MWCNT were evaluated on the basis of EC concentrations. Associations were studied between observed MWCNT exposure levels and location and activities. SEM analyses showed MWCNTs, present as agglomerates ranging between 200 nm and 100 µm. Exposure levels of MWCNTs observed in the production area during the full scale synthesis of MWCNTs (N = 23) were comparable to levels observed during further handling of MWCNTs (N = 19): (GM (95% lower confidence limit-95% upper confidence limit)) 41 μg m(-3) (20-88) versus 43 μg m(-3) (22-86), respectively. In the R&D area (N = 11) and the office (N = 5), exposure levels of MWCNTs were significantly (P < 0.05) lower: 5 μg m(-3) (2-11) and 7 μg m(-3) (2-28), respectively. Bagging, maintenance of the reactor, and powder conditioning were associated with higher exposure levels in the production area, whereas increased exposure levels in the R&D area were related to handling of MWCNTs powder.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
商业生产合成和处理过程中多壁碳纳米管的职业暴露。
在过去十年中,全球碳纳米管(CNTs)的生产大幅增加,导致职业暴露。参与碳纳米管商业化生产的工人的暴露数据缺乏。本研究的目的是评估在商业生产设施中合成和处理多壁碳纳米管(MWCNTs)过程中的个人暴露情况,并将这些暴露水平与特定活动联系起来。在商业化生产和处理MWCNTs、研发活动和办公室工作期间,收集了个人全轮班过滤器样品。以EC浓度为基础评价MWCNT的浓度。研究了观察到的MWCNT暴露水平与地点和活动之间的关系。SEM分析显示,MWCNTs以团聚体形式存在,团聚体范围在200 nm至100 μ m之间。在大规模合成MWCNTs期间(N = 23)在生产区观察到的MWCNTs暴露水平与进一步处理MWCNTs期间(N = 19)观察到的水平相当:(GM(95%下置信限-95%上置信限))41 μ m(-3)(20-88)和43 μ m(-3)(22-86)。在研发区(N = 11)和办公室(N = 5), MWCNTs暴露水平显著(P < 0.05)降低,分别为5 μg m(-3)(2-11)和7 μg m(-3)(2-28)。装袋、反应器维护和粉末调节与生产区域较高的暴露水平有关,而研发区域较高的暴露水平与处理MWCNTs粉末有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Response to Article by Prof. Hans Kromhout, Hygiene Without Numbers. The Validity and Applicability of Using a Generic Exposure Assessment Model for Occupational Exposure to Nano-Objects and Their Aggregates and Agglomerates. Occupational Exposure to Polycyclic Aromatic Hydrocarbons in Polish Coke Plant Workers. A New Miniature Respirable Sampler for In-mask Sampling: Part 2-Tests Performed Inside the Mask. When Are Risk Analyses on Job Titles Informative?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1