Application of fuzzy logic for Alzheimer's disease diagnosis

Igor Krashenyi, A. Popov, J. Ramírez, J. Górriz
{"title":"Application of fuzzy logic for Alzheimer's disease diagnosis","authors":"Igor Krashenyi, A. Popov, J. Ramírez, J. Górriz","doi":"10.1109/SPS.2015.7168288","DOIUrl":null,"url":null,"abstract":"Fuzzy Inference System (FIS) is developed using subtractive clustering algorithm, and applied to classification between MRI images of patients having Mild Cognitive Impairment (MCI) or Alzheimer's Disease (AD) and Normal Controls (NC). Features used as FIS inputs are mean values and standard deviations in intensities from most descriptive brain regions. k-fold cross-validation was used to estimate FIS performance, resulting in accuracy, sensitivity, specificity and positive predictive value (ppv) characteristics of FIS classification between different groups. ppv was equal to 0.8778±0.0088 (AD vs. NC), 0.7289±0.0243 (NC vs. MCI), and 0.8531±0.0069 (MCI vs. AD).","PeriodicalId":193902,"journal":{"name":"2015 Signal Processing Symposium (SPSympo)","volume":"325 Pt A 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 Signal Processing Symposium (SPSympo)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPS.2015.7168288","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

Fuzzy Inference System (FIS) is developed using subtractive clustering algorithm, and applied to classification between MRI images of patients having Mild Cognitive Impairment (MCI) or Alzheimer's Disease (AD) and Normal Controls (NC). Features used as FIS inputs are mean values and standard deviations in intensities from most descriptive brain regions. k-fold cross-validation was used to estimate FIS performance, resulting in accuracy, sensitivity, specificity and positive predictive value (ppv) characteristics of FIS classification between different groups. ppv was equal to 0.8778±0.0088 (AD vs. NC), 0.7289±0.0243 (NC vs. MCI), and 0.8531±0.0069 (MCI vs. AD).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
模糊逻辑在阿尔茨海默病诊断中的应用
采用减法聚类算法开发了模糊推理系统(FIS),并将其应用于轻度认知障碍(MCI)或阿尔茨海默病(AD)患者的MRI图像与正常对照(NC)之间的分类。用作FIS输入的特征是来自大多数描述性大脑区域的强度的平均值和标准差。采用k-fold交叉验证对FIS进行性能评价,得出不同组间FIS分类的准确性、敏感性、特异性和阳性预测值(ppv)特征。ppv = 0.8778±0.0088 (AD vs. NC), 0.7289±0.0243 (NC vs. MCI), 0.8531±0.0069 (MCI vs. AD)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A scalable computing platform for digital pulse compression and digital beamforming Doppler Radar tomography of rotated object in noisy environment based on time-frequency transformation Direct signal suppression schemes for passive radar Voltage tunable bandpass filter IEEE 802.15.4 compliant in-building wireless sensor network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1