Extending the Power-Efficiency and Performance of Photonic Interconnects for Heterogeneous Multicores with Machine Learning

Scott Van Winkle, Avinash Karanth Kodi, Razvan C. Bunescu, A. Louri
{"title":"Extending the Power-Efficiency and Performance of Photonic Interconnects for Heterogeneous Multicores with Machine Learning","authors":"Scott Van Winkle, Avinash Karanth Kodi, Razvan C. Bunescu, A. Louri","doi":"10.1109/HPCA.2018.00048","DOIUrl":null,"url":null,"abstract":"As communication energy exceeds computation energy in future technologies, traditional on-chip electrical interconnects face fundamental challenges in the many-core era. Photonic interconnects have been proposed as a disruptive technology solution due to superior performance per Watt, distance independent energy consumption and CMOS compatibility for on-chip interconnects. Static power due to the laser being always switched on, varying link utilization due to spatial and temporal traffic fluctuations and thermal sensitivity are some of the critical challenges facing photonics interconnects. In this paper, we propose photonic interconnects for heterogeneous multicores using a checkerboard pattern that clusters CPU-GPU cores together and implements bandwidth reconfiguration using local router information without global coordination. To reduce the static power, we also propose a dynamic laser scaling technique that predicts the power level for the next epoch using the buffer occupancy of previous epoch. To further improve power-performance trade-offs, we also propose a regression-based machine learning technique for scaling the power of the photonic link. Our simulation results demonstrate a 34% performance improvement over a baseline electrical CMESH while consuming 25% less energy per bit when dynamically reallocating bandwidth. When dynamically scaling laser power, our buffer-based reactive and ML-based proactive prediction techniques show 40 - 65% in power savings with 0 - 14% in throughput loss depending on the reservation window size.","PeriodicalId":154694,"journal":{"name":"2018 IEEE International Symposium on High Performance Computer Architecture (HPCA)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Symposium on High Performance Computer Architecture (HPCA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HPCA.2018.00048","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

Abstract

As communication energy exceeds computation energy in future technologies, traditional on-chip electrical interconnects face fundamental challenges in the many-core era. Photonic interconnects have been proposed as a disruptive technology solution due to superior performance per Watt, distance independent energy consumption and CMOS compatibility for on-chip interconnects. Static power due to the laser being always switched on, varying link utilization due to spatial and temporal traffic fluctuations and thermal sensitivity are some of the critical challenges facing photonics interconnects. In this paper, we propose photonic interconnects for heterogeneous multicores using a checkerboard pattern that clusters CPU-GPU cores together and implements bandwidth reconfiguration using local router information without global coordination. To reduce the static power, we also propose a dynamic laser scaling technique that predicts the power level for the next epoch using the buffer occupancy of previous epoch. To further improve power-performance trade-offs, we also propose a regression-based machine learning technique for scaling the power of the photonic link. Our simulation results demonstrate a 34% performance improvement over a baseline electrical CMESH while consuming 25% less energy per bit when dynamically reallocating bandwidth. When dynamically scaling laser power, our buffer-based reactive and ML-based proactive prediction techniques show 40 - 65% in power savings with 0 - 14% in throughput loss depending on the reservation window size.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用机器学习扩展异构多核光子互连的功率效率和性能
随着未来技术中通信能量超过计算能量,传统的片上电互连在多核时代面临着根本性的挑战。由于优越的每瓦特性能、距离无关的能耗和片上互连的CMOS兼容性,光子互连已被提出作为一种颠覆性的技术解决方案。由于激光始终处于开启状态而产生的静态功率、由于空间和时间流量波动而导致的链路利用率变化以及热敏性是光子互连面临的一些关键挑战。在本文中,我们提出了异构多核的光子互连,使用棋盘模式将CPU-GPU核聚集在一起,并使用本地路由器信息实现带宽重新配置,而无需全局协调。为了降低静态功率,我们还提出了一种动态激光缩放技术,该技术利用前一个历元的缓冲占用来预测下一个历元的功率水平。为了进一步改善功率性能权衡,我们还提出了一种基于回归的机器学习技术,用于缩放光子链路的功率。我们的仿真结果表明,在动态重新分配带宽时,与基准电气CMESH相比,性能提高了34%,而每比特消耗的能量减少了25%。当动态缩放激光功率时,我们基于缓冲的被动预测和基于ml的主动预测技术显示,根据预留窗口的大小,可以节省40 - 65%的功率,而吞吐量损失为0 - 14%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Record-Replay Architecture as a General Security Framework LATTE-CC: Latency Tolerance Aware Adaptive Cache Compression Management for Energy Efficient GPUs Secure DIMM: Moving ORAM Primitives Closer to Memory OuterSPACE: An Outer Product Based Sparse Matrix Multiplication Accelerator WIR: Warp Instruction Reuse to Minimize Repeated Computations in GPUs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1