Folding Methods for Event Timelines in Performance Analysis

Matthias Weber, Ronald Geisler, H. Brunst, W. Nagel
{"title":"Folding Methods for Event Timelines in Performance Analysis","authors":"Matthias Weber, Ronald Geisler, H. Brunst, W. Nagel","doi":"10.1109/IPDPSW.2015.47","DOIUrl":null,"url":null,"abstract":"The complexity of today's high performance computing systems, and their parallel software, requires performance analysis tools to fully understand application performance behavior. The visualization of event streams has proven to be a powerful approach for the detection of various types of performance problems. However, visualization of large numbers of process streams quickly hits the limits of available screen resolution. To alleviate this problem we propose folding strategies for event timelines that consider common questions during performance analysis. We demonstrate the effectiveness of our solution with code inefficiencies in two real-world applications, PIConGPU and COSMO-SPECS. Our methods facilitate visual scalability and provide powerful overviews of performance data at the same time. Furthermore, our folding strategies improve GPU stream visualization and allow easy evaluation of the GPU device utilization.","PeriodicalId":340697,"journal":{"name":"2015 IEEE International Parallel and Distributed Processing Symposium Workshop","volume":"135 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Parallel and Distributed Processing Symposium Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPDPSW.2015.47","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

The complexity of today's high performance computing systems, and their parallel software, requires performance analysis tools to fully understand application performance behavior. The visualization of event streams has proven to be a powerful approach for the detection of various types of performance problems. However, visualization of large numbers of process streams quickly hits the limits of available screen resolution. To alleviate this problem we propose folding strategies for event timelines that consider common questions during performance analysis. We demonstrate the effectiveness of our solution with code inefficiencies in two real-world applications, PIConGPU and COSMO-SPECS. Our methods facilitate visual scalability and provide powerful overviews of performance data at the same time. Furthermore, our folding strategies improve GPU stream visualization and allow easy evaluation of the GPU device utilization.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
性能分析中事件时间线的折叠方法
当今高性能计算系统及其并行软件的复杂性需要性能分析工具来完全理解应用程序的性能行为。事件流的可视化已被证明是检测各种类型性能问题的强大方法。然而,大量流程流的可视化很快就会达到可用屏幕分辨率的极限。为了缓解这个问题,我们提出了考虑性能分析过程中常见问题的事件时间线折叠策略。我们在两个实际应用程序PIConGPU和cosmos - spec中演示了我们的解决方案在代码效率低下方面的有效性。我们的方法促进了可视化的可伸缩性,同时提供了强大的性能数据概述。此外,我们的折叠策略改进了GPU流可视化,并允许轻松评估GPU设备利用率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Accelerating Large-Scale Single-Source Shortest Path on FPGA Relocation-Aware Floorplanning for Partially-Reconfigurable FPGA-Based Systems iWAPT Introduction and Committees Computing the Pseudo-Inverse of a Graph's Laplacian Using GPUs Optimizing Defensive Investments in Energy-Based Cyber-Physical Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1