Multiscale denoising algorithm based on the a trous algorithm

R. Marques, Cassius M. Laprano, F. Medeiros
{"title":"Multiscale denoising algorithm based on the a trous algorithm","authors":"R. Marques, Cassius M. Laprano, F. Medeiros","doi":"10.1109/SIBGRA.2002.1167172","DOIUrl":null,"url":null,"abstract":"In this work we present a novel application of the multiscale denoising algorithm proposed by Sita and Ramakrishnan (2000). We used it to filter artificially contaminated images by multiplicative speckle and additive Gaussian noise, respectively. This filtering scheme is a combination of the shift invariant discrete wavelet and nonlinear filtering applied to evoked potential signals. It employs a redundant discrete wavelet (the a trous algorithm) removing the smallest wavelet coefficients in each dyadic scale guided by the correlation existing between them in different scales.","PeriodicalId":286814,"journal":{"name":"Proceedings. XV Brazilian Symposium on Computer Graphics and Image Processing","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. XV Brazilian Symposium on Computer Graphics and Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIBGRA.2002.1167172","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In this work we present a novel application of the multiscale denoising algorithm proposed by Sita and Ramakrishnan (2000). We used it to filter artificially contaminated images by multiplicative speckle and additive Gaussian noise, respectively. This filtering scheme is a combination of the shift invariant discrete wavelet and nonlinear filtering applied to evoked potential signals. It employs a redundant discrete wavelet (the a trous algorithm) removing the smallest wavelet coefficients in each dyadic scale guided by the correlation existing between them in different scales.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于a - trous算法的多尺度去噪算法
在这项工作中,我们提出了由Sita和Ramakrishnan(2000)提出的多尺度去噪算法的一种新应用。我们分别用乘法散斑和加性高斯噪声来过滤人工污染的图像。该滤波方案将移不变离散小波和非线性滤波相结合,应用于诱发电位信号。它采用冗余离散小波算法,根据不同尺度下小波系数之间存在的相关性,去除每个二进尺度上最小的小波系数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Spherical maps visualization Texture feature neural classifier for remote sensing image retrieval systems Visualizing inner structures in multimodal volume data Linear features detection in SAR images for urban analysis Towards point-based acquisition and rendering of large real-world environments
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1