Yield optimization using k-means clustering algorithm to reduce Monte Carlo simulations

A. Canelas, R. Martins, R. Póvoa, N. Lourenço, N. Horta
{"title":"Yield optimization using k-means clustering algorithm to reduce Monte Carlo simulations","authors":"A. Canelas, R. Martins, R. Póvoa, N. Lourenço, N. Horta","doi":"10.1109/SMACD.2016.7520729","DOIUrl":null,"url":null,"abstract":"This paper presents an efficient yield optimization approach using k-means clustering algorithm to reduce Monte Carlo (MC) simulations. This approach uses a commercial electrical simulator and PDK models for evaluation purposes. The method was integrated in an analog IC design flow that includes the AIDA-C circuit sizing optimization tool. The proposed yield estimation technique reduces the number of required MC simulations during the optimization process. The simulated solutions are the most likely to populate the Pareto optimal front and result from a selection process based on a modified k-means algorithm. The proposed approach leads 75% reduction in the total number of the MC simulations for the presented case study.","PeriodicalId":441203,"journal":{"name":"2016 13th International Conference on Synthesis, Modeling, Analysis and Simulation Methods and Applications to Circuit Design (SMACD)","volume":"99 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 13th International Conference on Synthesis, Modeling, Analysis and Simulation Methods and Applications to Circuit Design (SMACD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SMACD.2016.7520729","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

This paper presents an efficient yield optimization approach using k-means clustering algorithm to reduce Monte Carlo (MC) simulations. This approach uses a commercial electrical simulator and PDK models for evaluation purposes. The method was integrated in an analog IC design flow that includes the AIDA-C circuit sizing optimization tool. The proposed yield estimation technique reduces the number of required MC simulations during the optimization process. The simulated solutions are the most likely to populate the Pareto optimal front and result from a selection process based on a modified k-means algorithm. The proposed approach leads 75% reduction in the total number of the MC simulations for the presented case study.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用k-均值聚类算法优化产量,减少蒙特卡罗模拟
本文提出了一种利用k-均值聚类算法来减少蒙特卡罗(MC)模拟的有效产率优化方法。该方法使用商业电子模拟器和PDK模型进行评估。将该方法集成到包含AIDA-C电路尺寸优化工具的模拟IC设计流程中。提出的产率估计技术减少了优化过程中所需的MC模拟次数。模拟的解决方案是最有可能填充帕累托最优前沿和基于改进的k-means算法的选择过程的结果。所提出的方法使所提出的案例研究的MC模拟总数减少了75%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Basic analog and digital circuits with a-IGZO TFTs MATLAB & VHDL-AMS co-simulation environment for IR-UWB transceiver design IIP framework: A tool for reuse-centric analog circuit design Modeling of fully printed organic field effect transistors for circuit design and simulation Synthesis-based methodology for high-speed multi-modulus divider
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1