Gregory Shakhnarovich, Paul A. Viola, Trevor Darrell
{"title":"Fast pose estimation with parameter-sensitive hashing","authors":"Gregory Shakhnarovich, Paul A. Viola, Trevor Darrell","doi":"10.1109/ICCV.2003.1238424","DOIUrl":null,"url":null,"abstract":"Example-based methods are effective for parameter estimation problems when the underlying system is simple or the dimensionality of the input is low. For complex and high-dimensional problems such as pose estimation, the number of required examples and the computational complexity rapidly become prohibitively high. We introduce a new algorithm that learns a set of hashing functions that efficiently index examples relevant to a particular estimation task. Our algorithm extends locality-sensitive hashing, a recently developed method to find approximate neighbors in time sublinear in the number of examples. This method depends critically on the choice of hash functions that are optimally relevant to a particular estimation problem. Experiments demonstrate that the resulting algorithm, which we call parameter-sensitive hashing, can rapidly and accurately estimate the articulated pose of human figures from a large database of example images.","PeriodicalId":131580,"journal":{"name":"Proceedings Ninth IEEE International Conference on Computer Vision","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"911","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Ninth IEEE International Conference on Computer Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2003.1238424","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 911
Abstract
Example-based methods are effective for parameter estimation problems when the underlying system is simple or the dimensionality of the input is low. For complex and high-dimensional problems such as pose estimation, the number of required examples and the computational complexity rapidly become prohibitively high. We introduce a new algorithm that learns a set of hashing functions that efficiently index examples relevant to a particular estimation task. Our algorithm extends locality-sensitive hashing, a recently developed method to find approximate neighbors in time sublinear in the number of examples. This method depends critically on the choice of hash functions that are optimally relevant to a particular estimation problem. Experiments demonstrate that the resulting algorithm, which we call parameter-sensitive hashing, can rapidly and accurately estimate the articulated pose of human figures from a large database of example images.