The Convergence of Iterated Classification

Chang An, H. Baird
{"title":"The Convergence of Iterated Classification","authors":"Chang An, H. Baird","doi":"10.1109/DAS.2008.52","DOIUrl":null,"url":null,"abstract":"We report an improved methodology for training a sequence of classifiers for document image content extraction, that is, the location and segmentation of regions containing handwriting, machine-printed text, photographs, blank space, etc. The resulting segmentation is pixel-accurate, and so accommodates a wide range of zone shapes (not merely rectangles). We have systematically explored the best scale (spatial extent) of features. We have found that the methodology is sensitive to ground-truthing policy, and especially to precision of ground-truth boundaries. Experiments on a diverse test set of 83 document images show that tighter ground-truth reduces per-pixel classification errors by 45% (from 38.9% to 21.4%). Strong evidence, from both experiments and simulation, suggests that iterated classification converges region boundaries to the ground-truth (i.e. they don't drift). Experiments show that four-stage iterated classifiers reduce the error rates by 24%. We also present an analysis of special cases suggesting reasons why boundaries converge to the ground-truth.","PeriodicalId":423207,"journal":{"name":"2008 The Eighth IAPR International Workshop on Document Analysis Systems","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 The Eighth IAPR International Workshop on Document Analysis Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DAS.2008.52","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

We report an improved methodology for training a sequence of classifiers for document image content extraction, that is, the location and segmentation of regions containing handwriting, machine-printed text, photographs, blank space, etc. The resulting segmentation is pixel-accurate, and so accommodates a wide range of zone shapes (not merely rectangles). We have systematically explored the best scale (spatial extent) of features. We have found that the methodology is sensitive to ground-truthing policy, and especially to precision of ground-truth boundaries. Experiments on a diverse test set of 83 document images show that tighter ground-truth reduces per-pixel classification errors by 45% (from 38.9% to 21.4%). Strong evidence, from both experiments and simulation, suggests that iterated classification converges region boundaries to the ground-truth (i.e. they don't drift). Experiments show that four-stage iterated classifiers reduce the error rates by 24%. We also present an analysis of special cases suggesting reasons why boundaries converge to the ground-truth.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
迭代分类的收敛性
我们报告了一种改进的方法,用于训练用于文档图像内容提取的分类器序列,即包含手写,机器打印文本,照片,空白等的区域的位置和分割。所得到的分割是像素精确的,因此可以适应各种区域形状(不仅仅是矩形)。我们系统地探索了特征的最佳尺度(空间范围)。我们发现,该方法对地面真值策略很敏感,特别是对地面真值边界的精度。在83张文档图像的不同测试集上进行的实验表明,更严格的基础真值将每像素分类误差降低了45%(从38.9%降至21.4%)。来自实验和模拟的有力证据表明,迭代分类将区域边界收敛到基本事实(即它们不会漂移)。实验表明,四阶段迭代分类器将错误率降低了24%。我们还提出了一个特殊情况的分析,说明边界收敛于基本真值的原因。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Graphics Image Processing System Affine Invariant Recognition of Characters by Progressive Pruning Comprehensive Global Typography Extraction System for Electronic Book Documents Fast and Accurate Skew Estimation Based on Distance Transform A Proposal of Evaluation Method for Balance of White Space in Calligraphy by Using Horizon View Camera
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1