Joint Source-Channel Decoding of Multiple Description Quantized and Variable Length Coded Markov Sequences

X. Wang, Xiaolin Wu
{"title":"Joint Source-Channel Decoding of Multiple Description Quantized and Variable Length Coded Markov Sequences","authors":"X. Wang, Xiaolin Wu","doi":"10.1109/ICME.2006.262808","DOIUrl":null,"url":null,"abstract":"This paper proposes a framework for joint source-channel decoding of Markov sequences that are encoded by an entropy coded multiple description quantizer (MDQ), and transmitted via a lossy network. This framework is particularly suited for lossy networks of inexpensive energy-deprived mobile source encoders. Our approach is one of maximum aposteriori probability (MAP) sequence estimation that exploits both the source memory and the correlation between different MDQ descriptions. The MAP problem is modeled and solved as one of the longest path in a weighted directed acyclic graph. For MDQ-compressed Markov sequences impaired by both bit errors and erasure errors, the proposed joint source-channel MAP decoder can achieve 5 dB higher SNR than the conventional hard-decision decoder. Furthermore, the new MDQ decoding technique unifies the treatments of different subsets of the K descriptions available at the decoder, circumventing the thorny issue of requiring up to 2K-1 MDQ side decoders","PeriodicalId":339258,"journal":{"name":"2006 IEEE International Conference on Multimedia and Expo","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE International Conference on Multimedia and Expo","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICME.2006.262808","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper proposes a framework for joint source-channel decoding of Markov sequences that are encoded by an entropy coded multiple description quantizer (MDQ), and transmitted via a lossy network. This framework is particularly suited for lossy networks of inexpensive energy-deprived mobile source encoders. Our approach is one of maximum aposteriori probability (MAP) sequence estimation that exploits both the source memory and the correlation between different MDQ descriptions. The MAP problem is modeled and solved as one of the longest path in a weighted directed acyclic graph. For MDQ-compressed Markov sequences impaired by both bit errors and erasure errors, the proposed joint source-channel MAP decoder can achieve 5 dB higher SNR than the conventional hard-decision decoder. Furthermore, the new MDQ decoding technique unifies the treatments of different subsets of the K descriptions available at the decoder, circumventing the thorny issue of requiring up to 2K-1 MDQ side decoders
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多重描述量化变长马尔可夫序列的信源信道联合解码
提出了一种用熵编码多重描述量化器(MDQ)编码并通过有损网络传输的马尔可夫序列的信源信道联合解码框架。这个框架特别适合于低成本的低能耗移动源编码器的有损网络。我们的方法是利用源内存和不同MDQ描述之间的相关性的最大后验概率(MAP)序列估计之一。将MAP问题建模并求解为加权有向无环图中的最长路径之一。对于同时存在比特错误和擦除错误的mdq压缩马尔可夫序列,本文提出的源信道联合MAP解码器比传统硬判决解码器的信噪比提高了5 dB。此外,新的MDQ解码技术统一了解码器中可用的K描述的不同子集的处理,避免了需要多达2K-1 MDQ侧解码器的棘手问题
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Acoustic Echo Cancellation in a Channel with Rapidly Varying Gain A Two-Layer Graphical Model for Combined Video Shot and Scene Boundary Detection SCCS: A Scalable Clustered Camera System for Multiple Object Tracking Communicating Via Message Passing Interface Identification and Detection of the Same Scene Based on Flash Light Patterns Bandwidth Estimation in Wireless Lans for Multimedia Streaming Services
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1