Implementation of Artificial Neural Networks In Predicting Students ‘English Understanding Level Using The Backpropagation Method

Kristin D R Sianipar, Septri Wanti Siahaan, I. Parlina
{"title":"Implementation of Artificial Neural Networks In Predicting Students ‘English Understanding Level Using The Backpropagation Method","authors":"Kristin D R Sianipar, Septri Wanti Siahaan, I. Parlina","doi":"10.30596/jcositte.v1i2.5072","DOIUrl":null,"url":null,"abstract":"English is a language that unites humans in communicating with others. The existence of language differences can make it difficult for people to understand each other in dialogue. Therefore, the role of English is very useful to unite human communication. In this case, researchers make research to predict the level of understanding of students in English. Predicting the level of understanding of students in English is needed to determine the level of ability or understanding of students in English so that students can further enhance student abilities. English is very necessary for students to support a bright future. In this study implements the Artificial Neural Network in conducting research and applying the bacpropagation method in it. To complete this study, researchers used several criteria, namely: Reading References, Hearing from the Environment, Practicing, Utilizing Technology. Of the four criteria using the backpropagation method is useful for training in predicting the level of understanding of students in English. The results of this research test get that the level of understanding of students in English is with the level of accuracy and architecture Keyword : Artificial Neural Network; Prediction; English; Level of Understanding; Backpropagation. This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License. Corresponding Author: Septri Wanti Siahaan, Department of Informatics Engineering STIKOM Tunas Bangsa Pematangsiantar Jl. Jend. Sudirman, Blok. A, No. 1, 2, dan 3, Pematangsiantar, 21143, Sumatera Utara, Indonesia. Email : septriwanti26@gmail.com Article history: Received Aug 21, 2020 Revised Aug 27, 2020 Accepted Sep 01, 2020","PeriodicalId":202535,"journal":{"name":"Journal of Computer Science, Information Technologi and Telecommunication Engineering","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computer Science, Information Technologi and Telecommunication Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30596/jcositte.v1i2.5072","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

English is a language that unites humans in communicating with others. The existence of language differences can make it difficult for people to understand each other in dialogue. Therefore, the role of English is very useful to unite human communication. In this case, researchers make research to predict the level of understanding of students in English. Predicting the level of understanding of students in English is needed to determine the level of ability or understanding of students in English so that students can further enhance student abilities. English is very necessary for students to support a bright future. In this study implements the Artificial Neural Network in conducting research and applying the bacpropagation method in it. To complete this study, researchers used several criteria, namely: Reading References, Hearing from the Environment, Practicing, Utilizing Technology. Of the four criteria using the backpropagation method is useful for training in predicting the level of understanding of students in English. The results of this research test get that the level of understanding of students in English is with the level of accuracy and architecture Keyword : Artificial Neural Network; Prediction; English; Level of Understanding; Backpropagation. This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License. Corresponding Author: Septri Wanti Siahaan, Department of Informatics Engineering STIKOM Tunas Bangsa Pematangsiantar Jl. Jend. Sudirman, Blok. A, No. 1, 2, dan 3, Pematangsiantar, 21143, Sumatera Utara, Indonesia. Email : septriwanti26@gmail.com Article history: Received Aug 21, 2020 Revised Aug 27, 2020 Accepted Sep 01, 2020
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
神经网络在反向传播法预测学生英语理解水平中的应用
英语是一种将人类团结起来与他人交流的语言。语言差异的存在会使人们在对话中难以相互理解。因此,英语的作用是非常有用的,团结人类的交流。在这种情况下,研究人员进行研究来预测学生对英语的理解水平。预测学生对英语的理解水平是确定学生对英语的能力或理解水平的必要条件,以便学生进一步提高自己的能力。英语对于学生来说是非常必要的,以支持一个光明的未来。本研究采用人工神经网络进行研究,并将反向传播方法应用于其中。为了完成这项研究,研究人员使用了几个标准,即:阅读参考文献,听取环境,实践,利用技术。在四个标准中,使用反向传播方法对预测学生英语理解水平的训练是有用的。本研究测试的结果表明,学生对英语的理解水平与准确性和结构水平有关。关键词:人工神经网络;预测;英语;理解水平;反向传播。本作品采用知识共享署名-相同方式共享4.0国际许可协议。通讯作者:Septri Wanti Siahaan,新加坡理工大学信息工程系。Jend。Sudirman,勃洛克。印度尼西亚苏门答腊北苏门答腊Pematangsiantar 21143, 1号,2号,3号AEmail: septriwanti26@gmail.com文章历史:收稿2020年8月21日修稿2020年8月27日收稿2020年9月1日
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Web-Based Sales Information System Design At Eco Farming Bukit Lawang UI/UX Design in E-Learning University of Harapan Medan using User Centered Design (UCD) Sales Digital Cashier Application Development Using Website (Case Study : Gogo Bakery) E-Learning System Design using Software Requirement Specification (SRS) Case Study: Unhar Medan Web-Based Shoes Service Application
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1