DIAMoND: Distributed Intrusion/Anomaly Monitoring for Nonparametric Detection

Maciej Korczyński, Ali Hamieh, J. Huh, Henrik Holm, S. R. Rajagopalan, N. Fefferman
{"title":"DIAMoND: Distributed Intrusion/Anomaly Monitoring for Nonparametric Detection","authors":"Maciej Korczyński, Ali Hamieh, J. Huh, Henrik Holm, S. R. Rajagopalan, N. Fefferman","doi":"10.1109/ICCCN.2015.7288396","DOIUrl":null,"url":null,"abstract":"In this paper, we describe a fully nonparametric, scalable, distributed detection algorithm for intrusion/anomaly detection in networks. We discuss how this approach addresses a growing trend in distributed attacks while also providing solutions to problems commonly associated with distributed detection systems. We explore the impacts to detection performance from network topology, from the defined range of distributed communication for each node, and from involving only a small percent of total nodes in the network in the distributed detection communication. We evaluate our algorithm using a software-based testing implementation, and demonstrate up to 20% improvement in detection capability over parallel, isolated anomaly detectors for both stealthy port scans and DDoS attacks.","PeriodicalId":117136,"journal":{"name":"2015 24th International Conference on Computer Communication and Networks (ICCCN)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 24th International Conference on Computer Communication and Networks (ICCCN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCCN.2015.7288396","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

In this paper, we describe a fully nonparametric, scalable, distributed detection algorithm for intrusion/anomaly detection in networks. We discuss how this approach addresses a growing trend in distributed attacks while also providing solutions to problems commonly associated with distributed detection systems. We explore the impacts to detection performance from network topology, from the defined range of distributed communication for each node, and from involving only a small percent of total nodes in the network in the distributed detection communication. We evaluate our algorithm using a software-based testing implementation, and demonstrate up to 20% improvement in detection capability over parallel, isolated anomaly detectors for both stealthy port scans and DDoS attacks.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
DIAMoND:用于非参数检测的分布式入侵/异常监测
在本文中,我们描述了一种用于网络入侵/异常检测的完全非参数、可扩展的分布式检测算法。我们讨论了这种方法如何解决分布式攻击中日益增长的趋势,同时还提供了与分布式检测系统通常相关的问题的解决方案。我们从网络拓扑、每个节点的分布式通信的定义范围以及仅涉及分布式检测通信中网络中总节点的一小部分来探讨对检测性能的影响。我们使用基于软件的测试实现来评估我们的算法,并证明在隐蔽端口扫描和DDoS攻击的并行、隔离异常检测器的检测能力上提高了20%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Flyover: A Cost-Efficient and Scale-Out Data Center Network Architecture An AIFSN Prediction Scheme for Multimedia Wireless Communications An Experimental Platform for Quantified Crowd Software Defined Network Inference with Passive/Active Evolutionary-Optimal pRobing (SNIPER) NDN Live Video Broadcasting over Wireless LAN
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1