KarySOM: An Unsupervised Learning based Approach for Human Karyotyping using Self-Organizing Maps

Casian-Nicolae Marc, G. Czibula
{"title":"KarySOM: An Unsupervised Learning based Approach for Human Karyotyping using Self-Organizing Maps","authors":"Casian-Nicolae Marc, G. Czibula","doi":"10.1109/ICCP.2018.8516580","DOIUrl":null,"url":null,"abstract":"Cytogenetics is a field of genetics investigating the relationships between the hereditary characteristics, structure and behavior of human chromosomes, as well as the medical and evolutionary repercussions of chromosomal abnormalities. Detecting the human karyotype and chromosomal anomalies could offer relevant information about human genetics and possible genetic disorders. This paper investigates an automatic solution for chromosomes classification and introduces an unsupervised learning approach KarySOM based on self-organizing maps for the problem of automatically human karyotyping, with the more general goal of uncovering chromosomal anomalies. The experimental evaluation of the proposed approach highlights its effectiveness for unsupervised classification of human chromosomes.","PeriodicalId":259007,"journal":{"name":"2018 IEEE 14th International Conference on Intelligent Computer Communication and Processing (ICCP)","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 14th International Conference on Intelligent Computer Communication and Processing (ICCP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCP.2018.8516580","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Cytogenetics is a field of genetics investigating the relationships between the hereditary characteristics, structure and behavior of human chromosomes, as well as the medical and evolutionary repercussions of chromosomal abnormalities. Detecting the human karyotype and chromosomal anomalies could offer relevant information about human genetics and possible genetic disorders. This paper investigates an automatic solution for chromosomes classification and introduces an unsupervised learning approach KarySOM based on self-organizing maps for the problem of automatically human karyotyping, with the more general goal of uncovering chromosomal anomalies. The experimental evaluation of the proposed approach highlights its effectiveness for unsupervised classification of human chromosomes.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
KarySOM:一种基于无监督学习的人类自组织地图核型分析方法
细胞遗传学是研究人类染色体的遗传特征、结构和行为之间的关系,以及染色体异常的医学和进化影响的遗传学领域。检测人类核型和染色体异常可以提供有关人类遗传学和可能的遗传疾病的相关信息。本文研究了染色体分类的自动解决方案,并引入了一种基于自组织图的无监督学习方法KarySOM,用于人类自动核型问题,其更一般的目标是发现染色体异常。该方法的实验评价突出了其对人类染色体的无监督分类的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Deep Learning Approach For Pedestrian Segmentation In Infrared Images Real-Time Temporal Frequency Detection in FPGA Using Event-Based Vision Sensor Miniature Autonomous Vehicle Development on Raspberry Pi NEARBY Platform: Algorithm for Automated Asteroids Detection in Astronomical Images CoolCloudSim: Integrating Cooling System Models in CloudSim
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1