Robust Video Super-resolution Using Low-rank Matrix Completion

Chenyu Liu, Xianlin Zhang, Yang Liu, Xueming Li
{"title":"Robust Video Super-resolution Using Low-rank Matrix Completion","authors":"Chenyu Liu, Xianlin Zhang, Yang Liu, Xueming Li","doi":"10.1145/3177404.3177423","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a robust super-resolution method using low rank matrix completion for videos with local motions and local deformations. It is based on the multi-frame low rank matrix completion super-resolution (MCSR) framework proposed by Chen. Nonlocal multi-scale similar patches are extracted in registration instead of optical flow for complex motions. By rearranging patches extracted from low resolution frames, super-resolution problem is converted to matrix completion. Low resolution patches is represented as observed entries in a low-rank matrix. We adopt alternating direction method of multipliers (ADMM) to minimize nuclear norm and introduce a weighted fusion method to acquire final high resolution patches. Experimental results showed that the proposed method outperformed MCSR on videos with complex motions.","PeriodicalId":133378,"journal":{"name":"Proceedings of the International Conference on Video and Image Processing","volume":"1069 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the International Conference on Video and Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3177404.3177423","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we propose a robust super-resolution method using low rank matrix completion for videos with local motions and local deformations. It is based on the multi-frame low rank matrix completion super-resolution (MCSR) framework proposed by Chen. Nonlocal multi-scale similar patches are extracted in registration instead of optical flow for complex motions. By rearranging patches extracted from low resolution frames, super-resolution problem is converted to matrix completion. Low resolution patches is represented as observed entries in a low-rank matrix. We adopt alternating direction method of multipliers (ADMM) to minimize nuclear norm and introduce a weighted fusion method to acquire final high resolution patches. Experimental results showed that the proposed method outperformed MCSR on videos with complex motions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用低秩矩阵补全鲁棒视频超分辨率
在本文中,我们提出了一种基于低秩矩阵补全的鲁棒超分辨率方法,用于具有局部运动和局部变形的视频。该算法基于Chen提出的多帧低秩矩阵补全超分辨率(MCSR)框架。在配准中提取非局部多尺度相似块,代替复杂运动的光流。通过对低分辨率帧提取的小块进行重新排列,将超分辨率问题转化为矩阵补全。低分辨率补丁表示为低秩矩阵中的观测条目。我们采用交替方向乘法器(ADMM)最小化核范数,并引入加权融合方法获得最终的高分辨率补丁。实验结果表明,该方法在具有复杂运动的视频上优于MCSR。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Exposing Video Forgeries by Detecting Misaligned Double Compression Weld Defect Detection based on Completed Local Ternary Patterns Faster R-CNN for Marine Organism Detection and Recognition Using Data Augmentation Application Research of the Laser and Digital Image Processing in Bridge Monitoring Signal Processing of Ultrasonic Testing of Hardened Layer Depth Based on Wavelet Transform Theory
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1