Finite-time projective synchronization control of uncertain complex networks with brushless DC motor and Rikitake system

Meng Zhang, Min Han
{"title":"Finite-time projective synchronization control of uncertain complex networks with brushless DC motor and Rikitake system","authors":"Meng Zhang, Min Han","doi":"10.1109/ICACI.2016.7449811","DOIUrl":null,"url":null,"abstract":"The finite-time projective synchronization control of two uncertain complex networks with Brushless DC motor (BLDCM) and Rikitake system is investigated. Based on the finite-time stability theory and adaptive technique, a novel and useful finite-time synchronization control criteria is proposed. The effective synchronization controller and corresponding update laws are designed to guarantee projective synchronization control of the two uncertain complex networks in a given finite-time. Simultaneously, the unknown parameters of node dynamics are estimated successfully and the uncertain topological structure tend to the proper constants. Especially, the proposed approach can rapidly track the network topology changes well and the weight topological structure values are automatically adapted to the appropriate constants in the process of synchronization control. To validate the proposed method, introduced the Brushless DC motor (BLDCM) and Rikitake system with uncertainties as the nodes of the networks, and numerical simulations are given to illustrate the theoretical results.","PeriodicalId":211040,"journal":{"name":"2016 Eighth International Conference on Advanced Computational Intelligence (ICACI)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Eighth International Conference on Advanced Computational Intelligence (ICACI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICACI.2016.7449811","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The finite-time projective synchronization control of two uncertain complex networks with Brushless DC motor (BLDCM) and Rikitake system is investigated. Based on the finite-time stability theory and adaptive technique, a novel and useful finite-time synchronization control criteria is proposed. The effective synchronization controller and corresponding update laws are designed to guarantee projective synchronization control of the two uncertain complex networks in a given finite-time. Simultaneously, the unknown parameters of node dynamics are estimated successfully and the uncertain topological structure tend to the proper constants. Especially, the proposed approach can rapidly track the network topology changes well and the weight topological structure values are automatically adapted to the appropriate constants in the process of synchronization control. To validate the proposed method, introduced the Brushless DC motor (BLDCM) and Rikitake system with uncertainties as the nodes of the networks, and numerical simulations are given to illustrate the theoretical results.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
无刷直流电机和Rikitake系统不确定复杂网络的有限时间投影同步控制
研究了由无刷直流电动机(BLDCM)和Rikitake系统组成的两个不确定复杂网络的有限时间投影同步控制。基于有限时间稳定性理论和自适应技术,提出了一种新颖实用的有限时间同步控制准则。设计了有效的同步控制器和相应的更新律,保证了两个不确定复杂网络在给定有限时间内的投影同步控制。同时,成功地估计了节点动力学的未知参数,使不确定的拓扑结构趋于合适的常数。特别是,该方法能够快速跟踪网络拓扑结构的变化,并在同步控制过程中自动将权重拓扑结构值调整为合适的常数。为了验证所提出的方法,将无刷直流电动机(BLDCM)和具有不确定性的Rikitake系统作为网络节点,并通过数值仿真验证了理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Short term traffic flow prediction based on on-line sequential extreme learning machine Computational intelligent color normalization for wheat plant images to support precision farming A new time-dependent algorithm for post enrolment-based course timetabling problem Semi-automatic construction of thyroid cancer intervention corpus from biomedical abstracts Improvement of spatial data clustering algorithm in city location
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1