optimising Public Bus Transit Networks Using Deep Reinforcement Learning

Ahmed Darwish, Momen Khalil, Karim Badawi
{"title":"optimising Public Bus Transit Networks Using Deep Reinforcement Learning","authors":"Ahmed Darwish, Momen Khalil, Karim Badawi","doi":"10.1109/ITSC45102.2020.9294710","DOIUrl":null,"url":null,"abstract":"Public Transportation Buses are an integral part of our cities, which relies heavily on optimal planning of routes. The quality of the routes directly influences the quality of service provided to passengers, in terms of coverage, directness, and in-vehicle travel time. In addition, it affects the profitability of the transportation system, since the network structure directly influences the operational costs. We propose a system which automates the planning of bus networks based on given demand. The system implements a paradigm, Deep Reinforcement Learning, which has not been used in past literature before for solving the well-documented multi-objective Transit Network Design and Frequency Setting Problem (TNDFSP). The problem involves finding a set of routes in an urban area, each with its own bus frequency. It is considered an NP-Hard combinatorial problem with a massive search space. Compared to state-of-the-art paradigms, our system produced very competitive results, outperforming state-of-the-art solutions.","PeriodicalId":394538,"journal":{"name":"2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC)","volume":"130 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITSC45102.2020.9294710","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Public Transportation Buses are an integral part of our cities, which relies heavily on optimal planning of routes. The quality of the routes directly influences the quality of service provided to passengers, in terms of coverage, directness, and in-vehicle travel time. In addition, it affects the profitability of the transportation system, since the network structure directly influences the operational costs. We propose a system which automates the planning of bus networks based on given demand. The system implements a paradigm, Deep Reinforcement Learning, which has not been used in past literature before for solving the well-documented multi-objective Transit Network Design and Frequency Setting Problem (TNDFSP). The problem involves finding a set of routes in an urban area, each with its own bus frequency. It is considered an NP-Hard combinatorial problem with a massive search space. Compared to state-of-the-art paradigms, our system produced very competitive results, outperforming state-of-the-art solutions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用深度强化学习优化公交网络
公共交通公交车是我们城市不可分割的一部分,它在很大程度上依赖于路线的优化规划。路线的质量直接影响到为乘客提供的服务质量,包括覆盖范围、直接性和车内旅行时间。此外,它还影响运输系统的盈利能力,因为网络结构直接影响运营成本。提出了一种基于给定需求的公交线网自动规划系统。该系统实现了一种范式,深度强化学习,这在过去的文献中尚未被用于解决记录良好的多目标交通网络设计和频率设置问题(TNDFSP)。这个问题涉及到在市区找到一组路线,每条路线都有自己的公交频率。它被认为是一个具有巨大搜索空间的NP-Hard组合问题。与最先进的范例相比,我们的系统产生了非常有竞争力的结果,优于最先进的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
CR-TMS: Connected Vehicles enabled Road Traffic Congestion Mitigation System using Virtual Road Capacity Inflation A novel concept for validation of pre-crash perception sensor information using contact sensor Space-time Map based Path Planning Scheme in Large-scale Intelligent Warehouse System Weakly-supervised Road Condition Classification Using Automatically Generated Labels Studying the Impact of Public Transport on Disaster Evacuation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1